• 제목/요약/키워드: Section-by-section method

검색결과 3,626건 처리시간 0.031초

m-section의 위상반전이 있는 Mach-Zehnder형 진행파 $Ti:LiNbO_3$ 광변조기 (Mach-Zehnder Type $Ti:LiNbO_3$ Traveling-Wave Optical Modulator with m-Section Phase Reversal)

  • 이우진;김경암;김우경;김창민
    • 대한전자공학회논문지SD
    • /
    • 제39권7호
    • /
    • pp.26-36
    • /
    • 2002
  • z-cut $LiNbO_3$ 기판위에 3-section, 5-section 위상반전 전극을 가진 Mach-Zehnder형 진행파 광변조기를 설계 및 제작하였다. FDM(Finite Difference Method : 유한 차분법)을 이용하여 광도파로를 설계하였으며, MW(Microwave)전극 taper영역의 입${\cdot}$출력단에서는 CMM(Conformal Mapping Method: 등각사상법)을, 변조영역에서는 SOR(Successive Over Relaxation: 반복 이완법)을 이용하여 설계를 수행하였다. 제작된 소자의 S 파라미터를 측정하였다. 측정된 S파라미터를 이용하여 이론적으로 주파수응답 R(${\omega}$)을 구하였다. 3-section 전극의 경우 중심 주파수 25GHz에 ${\sim}$15GHz의 대역폭, 5-section의 경우 중심 주파수 45GHz에 ${\sim}$22GHz의 대역폭을 갖는 bandpass 동작을 나타낼 것으로 예측되었다.

유전자 알고리즘을 이용한 컨테이너선을 위한 침식예방용 최적방향타 단면 설계 (Study on Optimization of Anti-erosion Rudder Section of Large Container Ship by Genetic Algorithm)

  • 김문찬;이언식;변태영
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.403-410
    • /
    • 2008
  • This paper describes the optimization of the rudder section by the genetic algorism based on VLM(Vortex Lattice Method) and panel method. The developed propeller-rudder analysis program has been validated by comparing with experimental data. The research extends to optimize the anti-erosion rudder section of the large container ship. The object function is the amount of pressure at leading edge of rudder which is closely related with erosion phenomena. The optimized rudder has been compared with conventional rudder with NACA 0021 section by analyzing with the developed program. The finally optimized section has low and mild pressure distribution in comparison with the NACA rudder. The experiments is expected to be carried out for the validation of the present optimization and more parametric study of section geometry is also expected to be conducted in the near future.

일부하 곡선을 이용한 배전계통 구간부하 관리방법 (A Section Load Management Method using Daily Load Curve in Distribution Systems)

  • 임성일
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.47-52
    • /
    • 2012
  • DAS(Distribution Automation System) is equipped with several software applications such as service restoration, loss minimization, and protective relay coordination. The software applications of DAS are very sensitive to the amount of section load being carried by a particular section of distribution lines. Moreover, each software application requires a different parameter of the section load according to its purpose. Therefore, This paper proposes a new section load management method using real-time measurement data of the distribution lines. In order to provide accurate data to DAS applications, this method considers section loads in terms of the relationship of power versus time. In order to establish that the proposed method is feasible, a performance-testing simulator was developed, and case studies were conducted for a modified real distribution network.

Analytical method to estimate cross-section stress profiles for reactor vessel nozzle corners under internal pressure

  • Oh, Changsik;Lee, Sangmin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.401-413
    • /
    • 2022
  • This paper provides a simple method by which to estimate the cross-section stress profiles for nozzles designed according to ASME Code Section III. Further, this method validates the effectiveness of earlier work performed by the authors on standard nozzles. The method requires only the geometric information of the pressure vessel and the attached nozzle. A PWR direct vessel injection nozzle, a PWR outlet nozzle, a PWR inlet nozzle and a BWR recirculation outlet nozzle are selected based on their corresponding specific designs, e.g., a varying nozzle radius, a varying nozzle thickness and an outlet nozzle boss. A cross-section stress profile comparison shows that the estimates are in good agreement with the finite element analysis results. Differences in stress intensity factors calculated in accordance with ASME BPVC Section XI Appendix G are discussed. In addition, a change in the dimensions of an alternate nozzle design relative to the standard values is discussed, focusing on the stress concentration factors of the nozzle inside corner.

회전 표적의 고주파수 후방산란단면적 해석 (High-frequency Back-scattering Cross Section Analysis of Rotating Targets)

  • 김국현;조대승;김진형
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.16-24
    • /
    • 2007
  • The high-frequency analysis method of back-scattering cross section spectrum of rotating targets is established. The time history of the back-scattering cross section is calculated using a quasi-stationary approach, based on a physical optics and a physical theory of diffraction, combining an adaptive triangular beam method to consider the shadow effect. And the spectra of back-scattering cross section by the Doppler effect are analyzed applying a simple fast Fourier transform method to its time history. The numerical calculation for rotating targets, such as rotating metal plates and underwater propeller, are carried out. The time history appears to be periodic with respect to the number of wings. The backscattering cross section spectrum level and its frequency shift are dependent on the rotating speed, direction, and the shape of the targets.

CFAR 적용시 섹션 크기 가변화를 이용한 오표적의 효율적 제거 (Effective Elimination of False Alarms by Variable Section Size in CFAR Algorithm)

  • 노지은;최병관;이희영
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.100-105
    • /
    • 2011
  • Generally, because received signals from radar are very bulky, the data are divided into manageable size called section, and sections are distributed into several digital signal processors. And then, target detection algorithms are applied simultaneously in each processor. CFAR(Constant False Alarm Rate) algorithm, which is the most popular target detection algorithm, can estimate accurate threshold values to determine which signals are targets or noises within center-cut of section allocated to each processor. However, its estimation precision is diminished in section edge data because of insufficient surrounding data to be referred. Especially this edge problem of CFAR is too serious if we have many sections to be processed, because it causes many false alarms in most every section edges. This paper describes false alarm issues on MCA(Minimum Cell Average)-CFAR, and proposes a false alarm elimination method by changing section size alternatively. Real received data from multi-function radar were used to evaluate a proposed method, and we show that our method drastically decreases false alarms without missing real targets, and improves detection performance.

멀티 에이전트 개념에 기반한 배전계통의 분산 자율적 고장구간 분리 기법 (Autonomous Separation Methodology of Faulted Section based on Multi-Agent Concepts in Distribution System)

  • 고윤석;홍대승;송완석;박학열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권6호
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper, autonomous separation methodology of faulted section based on network is proposed newly, which can minimize the outage effect as compared with the existing center-based faulted section separation method by determining and separating autonomously the faulted section by the free operation information exchange among IEDs on the feeder of distribution system. The all IEDs is designed in network in which client/server function is possible in order to separate autonomously the faulted section using PtP(Peer to Peer) communication. Also, Inference based solution of IED for the autonomous faulted section separation is designed by rules obtained from the analyzing results of distribution system topology. Here, the switch IEDs transmit on network the fault information utilizing on multi-casting communication method, at the fame time, determine selfly whether they operates or not by inferencing autonomously the faulted section using the inference-based solution after receiving the transmitted information. Finally, in order to verify the effectiveness and application possibility of the proposed methodology, the diversity fault cases are simulated for the typical distribution system.

가변단면 압출기 개발 및 응용 연구 (Development of CNC Extruder for Variable Cross-Section Extrusion Process and its Applied Research)

  • 최호준;임성주;신희택;최석우
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.130-134
    • /
    • 2008
  • Resource and energy saving is a very important practice for the future as well as for today. Weight saving of structural parts, which are formed by extrusion, plays a key role in manufacturing field. The cross-sections of extruded parts with industrial aluminum are constant in the axial direction by conventional extrusion method. Especially, these aluminum parts used and manufactured in the car industry need other processes to vary the cross-section in the axial direction. However, applications of these parts are often limited by high cost. If the cross-section of the parts is variable by only extrusion with newly developed method, the application of extruded aluminum parts will actually increase. Therefore, a new CNC extruder that can control the section area of a car part was invented for the first time in the nation. Using the extrusion machine, the experiment was performed to validate its workability during the variable section extrusion process. Also, numerical analysis was carried out to investigate the flow mode with different speeds of main ram and various pocket shapes of a die-set in the variable section extrusion process.

배전자동화시스템에서 1선 지락 고장 시 고장구간 판단방법 (Faulted Section Identification Method in Case of Single Line to Ground Fault)

  • 김병구;김영국
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.34-39
    • /
    • 2012
  • The DAS(Distribution Atomization System) determines a faulted section by using a FI(Fault Indicator) when the fault is occurred on the distribution networks. Sometimes FI is malfunction when the ground fault is occurred on a the distribution networks. As a result difficulties to make decision of faulted section. The cause of the FI malfunction is that the determination using the limited information of the installed area. In this study, a method is proposed to determine faulted section using the amount of the fault current instead of using the FI. This method is determinated faulted section using the fuzzy inference for the collected information from the all switches. The usefulness of the proposed algorithm is verified through the simulation test using PSCAD/EMTDC.

직접 제어 방식을 적용한 소형 지게차 변속 시스템에 관한 연구 (A Study on Applying the Direct Control Method for Small Forklift Transmission System)

  • 정영만;임구;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권4호
    • /
    • pp.34-40
    • /
    • 2013
  • The transmission control method of small forklift is classified into pilot control method and direct control method. In pilot control method, the hydraulic circuit which consists a lot of components is very complex so the production process is too costly and time consuming. The direct control method contains fewer components that can be configured to simple hydraulic circuit. It has more advantages because the shift sensitivity of transmission is changed easily via the input profile. In this paper, the controller design and the input profile for system are studied to apply to the direct control method. The input profile consists of Fill section, Hold section and Ramp section. The characteristic of each section is obtained through experiment. As the result, the shift sensitivity and starting performance are effected by Fill section and Hold section.