• Title/Summary/Keyword: Section inspection

Search Result 340, Processing Time 0.025 seconds

A Study on the Structural Behavior of Fabricated Columns Reinforced with Steel sheet Forms and Angles (ㄱ형강과 강판을 이용한 조립 기둥의 거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Yoon, Yeong-Ho;Kim, Sang-Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.89-98
    • /
    • 2007
  • The purpose of this study is to experimentally evaluate the structural behavior of built-up type column consisted of angles and y-shape steel sheet forms for filling concrete. This column for minimizing form working and reinforcement placing is able to improve capacity of construction and reduce the term of works. Thirteen 1/3 scaled columns were fabricated. The main variables are 1) effect of angles and y-shape steel sheets of fabricated columns, 2) slenderness of column, 3) eccentricity of column. The results show that the experimental capacity of built-up type column is similar to theoretical one by reinforcement concrete design code. The maximum loads increase according to the rate of angle to cross section of column.

Innovative Transient Thermal Gradient Control to Prevent Early Aged Cracking of Massive Concrete (매스콘크리트의 열경사 조절에 의한 수화열과 온도균열의 방지)

  • Kim, Seong-Soo;Cho, Tae-Jun;Lee, Jeong-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.164-172
    • /
    • 2008
  • The heat of hydration for early aged mass concrete induces high temperature with the hydration. Control of the temperature difference across a section is an effective strategy to minimize the hydration heat induced cracks for the structures where internal restraint is dominant. The current prevention methods for hydration cracking show some limitations for the control of thermal gradients, and these limitations could make micro and macro cracks in surface and core of concrete. Especially cooling methods can decrease the increasing hydration temperature, but it can not prevent the problem while decreasing temperature. Consequently heating pipes are added simultaneously with the cooling pipes in order to control the temperature gradients between core and surface of the concrete, followed by the finite element analysis (FEA). Based on the FEA, the proposed method using cooling pipe and heating pipes together has been found to be an effective alternative in thermal gradient control, in terms of controlling temperature induced cracks significantly.

An Examination of the Minimum Reinforcement Ratio for Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2017
  • The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code's value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code's value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.

Uniaxial Compression Behavior of Circular RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유시트로 구속된 원형 RC기둥의 일축압축 거동)

  • Han, Sang Hoon;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain curve is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with circular section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio, spiral area ratio, and concrete compressive strength are considered as the test variables. Experiment results indicate that CFS jacketing significantly enhances strength and ductility of concrete. In addition, the CFS-jacketed specimens with the spiral steel show the lower load increasement ratio than those without the spiral steel.

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Shear Performance Analysis of One-way Hollow Slab According to Shear Reinforcement (전단 보강 유무에 따른 일방향 중공슬래브의 전단 성능 분석)

  • Yoon, Sung-Wook;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2014
  • Hollow slab is a floor system which reduces the load of vertical structural members and earthquake load by decreasing self-weight of slab. Although hollow slab can reduce self-weight of slab remarkably, flexural strength and shear strength reduce due to the hollow section inside the slab, so it is very important to predict structural behavior. In spite of plenty of domestic and foreign studies on hollow slab, there is a shortage of research on shear performance according to shear reinforcement of one-way hollow slab. Therefore, this study aims to verify the need for shear reinforcement of one-way hollow slab by analyzing failure modes of one-way hollow slab depending on the state of shear reinforcement and comparing shear strengths of estimation formula and experimental value with one another.

Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening (구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구)

  • You, Young Chan;Choi, Ki Sun;Kim, Keung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Pull-off test is generally used to evaluate bond strength of FRP composite with concrete at job site. However, some damages on FRP composites can not be avoided during pull-off test and moreover test range of pull-off strength is limited by maximum tensile strength of concrete. Accordingly, it is required to set-up a test method that can evaluate mechanical properties of structural adhesive indirectly prior to pull-off test. In this study, the standard test methods for structural adhesive which can simply evaluate mechanical performance of adhesive were suggested through comparative experiments from each different standard in various countries. Particularly, gluing thickness of adhesive in tensile lap-shear tests, the section dimension of compression and bending test specimens become unified, and standard test specimen size is achieved by test results.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.