• 제목/요약/키워드: Section forces

검색결과 469건 처리시간 0.026초

Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during up-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;김선일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF

Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차의 영향 (Effects of Cutter Runout on Cutting Forces in Up-endmilling of Inconel 718)

  • 이영문;양승한;장승일;백승기;김선일;이동식
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.45-52
    • /
    • 2002
  • In an end milling process, the undeformed chip section area and cutting forces vary periodically with the phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to the cutter runout and tool shape error. In the current study, a method of estimating the real undeformed chip section area which reflects the cutter runout and tool shape error is presented during up-end milling processes of Inconel 718. The specific cutting forces, $K_r$ and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area, respectively. Both of the $K_{r}$ and $K_t$ values become smaller as the helix angle increases from $30^{\circ}$ to $40^{\circ}$. Whereas they become larger as the helix angle increases from $40^{\circ}$ to $50^{\circ}$. The $K_r$ and $K_t$ values show a tendency to decrease with increase of the modified chip section area.a.

엔드밀링 절삭력에 미치는 공구형상오차 I -상향 엔드밀링- (Effects of cutter runout on end milling forces I -Up and milling-)

  • 이영문;최원식;송태성;권오진;백승기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.985-988
    • /
    • 1997
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study ,a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. Size effect was identified from the analysis of specific cutting resistance obtained by using the modified undeformed chip section area.

  • PDF

Modeling of self-excited forces during multimode flutter: an experimental study

  • Siedziako, Bartosz;iseth, Ole O
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.293-309
    • /
    • 2018
  • The prediction of multimode flutter relies, to a larger extent than bimodal flutter, on accurate modeling of the self-excited forces since it is challenging to perform experimental validation by using aeroelastic tests for a multimode case. This paper sheds some light on the accuracy of predicted self-excited forces by comparing numerical predictions of self-excited forces with measured forces from wind tunnel tests considering the flutter vibration mode. The critical velocity and the corresponding flutter vibration mode of the Hardanger Bridge are first determined using the classical multimode approach. Then, a section model of the bridge is forced to undergo a motion corresponding to the flutter vibration mode at selected points along the bridge, during which the forces that act upon it are measured. The measured self-excited forces are compared with numerical predictions to assess the uncertainty involved in the modeling. The self-excited lift and pitching moment are captured in an excellent manner by the aerodynamic derivatives. The self-excited drag force is, on the other hand, not well represented since second-order effects dominate. However, the self-excited drag force is very small for the cross-section considered, making its influence on the critical velocity marginal. The self-excited drag force can, however, be of higher importance for other cross-sections.

저수호안에 작용하는 외력에 의한 안정성분석 (Stability Analysis of Low Flow Revetments on External Forces)

  • 김철;박남희;김대영;김윤환
    • 한국방재학회 논문집
    • /
    • 제8권5호
    • /
    • pp.147-153
    • /
    • 2008
  • 저수호안에 작용하는 외력들 중에서 유수에 의한 소류력과 항행하는 선박에 의한 항주파는 호안의 안정성에 가장 큰 영향을 미칠 수 있는 항목들이다. 본 연구에서는 이러한 외력들에 대해 호안의 안정성을 분석하였다. 분석대상지역은 서울시의 한강인공호안을 생태녹지공간으로 조성하는 시험시공구간이다. RMA-2모형을 이용하여 계산된 유속을 사용하여 소류력을 산정하고, 안정성은 대상구간에 대해 계산한 계산소류력과 호안재료의 허용소류력을 비교하여 분석하였다. 분석결과 측점 93의 200년빈도 계산소류력이 허용소류력을 초과하여 이 지점은 수리적안정성이 확보되지 않는 지점으로 판단할 수 있었다. 2007년 8월 10일의 강우에 대해서는 전구간에서 계산소류력이 허용소류력보다 작게 모의되었다. 따라서 소류력에 대해서는 안정하다고 판단할 수 있으나 부분적으로 호안이 침수된 부분에 세굴이 발생한 이유는 시공후 식생이 활착할 시간이 부족한 상태에서 작은 소류력에 대해서도 세굴이 발생하였으며, 항주파 등의 다른 외력과 중첩되어 발생하였다고 생각된다. 한강을 운행하는 한강유람선과 수상택시에 의해 발생하는 항주파를 계산하였으며 이를 이용하여 호안에 미치는 파력을 산정하여 호안재료에 따른 지지력과 비교하였다. 그 결과 한강을 운항하는 선박들이 호안에 미치는 외력은 허용지지력보다 매우 작은 값으로 판단되므로 호안은 항주파에 대해서는 안정하다고 판단할 수 있으나 소류력 등의 다른 외력과 동시에 작용할 경우소류력 등의 다른 외력과 동시에 작용할 경우에는 복합적인 외력을 고려해야 할 것이다.

엔드밀링 절삭력에 미치는 공구형상오차 I- 상향 엔드밀링 - (Effects of Cutter Runout on End Milling Forces I-Up Eng Milling-)

  • 이영문;양승한;송태성;권오진;백승기
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.63-70
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. The average specific cutting resistance, Ka is defined as the main cutting force component divided by the modified chip section area. Ka value becomes smaller as the helix angle increases from $30^circC \;to\;40\circC$. But it becomes larger as the helix angle increases from $40^\circ$to 50 . On one hand, the Ka value shows a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

  • Liu, Mingyue;Xiao, Longfei;Yang, Lijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.906-919
    • /
    • 2015
  • The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around ${\alpha}=15^{\circ}$. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • 제4권5호
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.

Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during down-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;이동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings

  • Ailin, Zhang;Shi, Zhang;Xiaoda, Xu;Yi, Hui;Giuseppe, Piccardo
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.369-383
    • /
    • 2022
  • Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.