• 제목/요약/키워드: Section Shape Steel

검색결과 230건 처리시간 0.028초

확장형 알루미늄 압출형재 적용에 관한 연구 (Study on Application of Large-Scale Aluminium Extruded Material)

  • 이재호;문인철;서수호;장영봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2672-2678
    • /
    • 2011
  • 철도차량의 차체 구조는 초기의 전(全) 목제에서 강제 후레임과 목제 차체의 조합, 리벳으로 결합한 전(全)강제차체, 전(全) 용접결합의 모노코크(monocoque)차체로 변천해 왔다. 구체의 재료 또한 Mild Steel이 많이 사용되어 왔으나, 가볍고 내식성이 우수한 경량 스테인레스 구체와 알루미늄 구체의 적용 비율이 급격히 높아지고 있다. 구조적으로는 종래의 골조와 외판으로 구성된 싱글 스킨 구조인 SSD (Sheet_Stringer Design)에서, 알루미늄 구체와 같이 대형 중공압출형재로 구성된 전(全)더블스킨 구조인 AED(All Extrusion Design)가 실용화되고 있다. 종래의 알루미늄 차체는 소형 압출재로 제작되어 용접에 의한 열영향을 받는 범위가 매우 크고 매우 취약한 특성 때문에 나타나는 용접결합 부분의 강성 저하가 많은 문제점을 일으켰다. 본 연구에서는 확장형 알루미늄 압출형재를 사용하여 부재 수를 감소시킴으로서 용접 공수를 줄이고 결합부의 용접 집중을 최소화 하여 품질 및 차체 강성을 향상 시킬 수 있는 방안을 제시하였다.

  • PDF

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad;Shahabian, Farzad;Bambaeechee, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.605-638
    • /
    • 2015
  • It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

옆문강도 및 측면충돌 성능을 고려한 알루미늄 도어 임펙트빔 최적화 연구 (Optimization of the Aluminum Door Impact Beam Considering the Side Door Strength and the Side Impact Capability)

  • 양지혁
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2025-2030
    • /
    • 2011
  • 최근에 많은 완성차 업계에서 차량 중량을 줄이기 위해 알루미늄 재질의 도어 임팩트빔을 사용하고 있으나, 이는 옆문강도 및 측면충돌 성능을 저하시킬 수 있다. 따라서 이 논문에서는 옆문강도 법규를 만족시키고 스틸 도어 빔 수준의 측면충돌 성능을 유지할 수 있는 알루미늄 빔의 최적화된 단면 형상과 설계수치를 제시하고자 한다.

상용 버스용 알루미늄 시트 프레임의 개발에 관한 연구 (A Study on the Development of Aluminum Seat Frame for Commercial Bus)

  • 우호광;이상복;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.91-100
    • /
    • 2004
  • This study presents the development of a new aluminum seat frame for the commercial bus. Back moment and seat belt anchorage analysis of the conventional steel seat frame was conducted as a base model. Effective aluminum section dimensions for aluminum pipe were calculated from equivalent stiffness and equivalent weight study. Back moment and seat belt anchorage strength with the developed aluminum seat frame were compared to those of the base model. Additionally, to pass the fatigue test, shape modification of side frame assembly was conducted. From this study we could reduce the weight of seat frame more than 5 kg. And the current analysis model and procedure can provide useful informations in designing a new commercial car seat and can reduce the overall design cost and time.

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

변위 및 응력제약을 받는 철골구조물의 최적설계 (Optimal Design of Steel Frameworks with Displacement and Stress Constraints)

  • 정영식;정진현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.288-295
    • /
    • 1996
  • This work presents an optimality criteria method applicable io the design of plane frames with I-shape sections. All kinds of constraints are treated properly to ensure the mathematical rigour of the method as ever. Among the various properties of a section, the cross-sectional area is chosen as the design variable associated with the member. Then other properties, moment of inertia and depth, are determined from the cross-sectional area using relationships established in advance from the sectional data for AISC standard W shapes. The optimality criteria established in this work is perfect in mathematical terms provided that the relationships between properties of a section are correct. A redesign algorithm is derived relying heavily on the Newton-Raphson method to solve the system of nonlinear constraint equations. A worked example is also Presented.

  • PDF

비대칭 축류형 제품의 점진성형공정 개발 (Development of a Flexible Incremental Forging Process to Manufacture Asymmetric Shafts)

  • 알리 알툰;이석렬;홍진태;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2005
  • Shafts having asymmetry or odd number of symmetry in the cross-section can not be simply manufactured by conventional incremental radial forging. In order to manufacture such shafts, the new concept of incremental forging with one punch and a flexible fixture is developed by suggesting a flexible fixture, instead of two opposed punches used in radial forging, so that the flexible fixture only supports the workpiece while the punch is moving during forming. A new flexible fixture is designed using the steel shots and vacuum technology. An equilateral triangular cross-section is selected as the sample shape to be manufactured by the proposed manufacturing method. The desired triangular cross-sectional shaft is manufactured with the errors of $3.0\%$.

  • PDF

매립형 역T형 합성보의 휨내력에 관한 실험적 연구 (An Experimental Study on Flexural Strength of Inverted T-shaped Composite Beams encased with concrete)

  • 장희성;정재훈;김진무;주경재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.145-152
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section is usually located near the top flange of the steel H-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. However, It is not easy for inverted T-shaped composite beam to construct and to apply continuous beam which has negative bending moment. As a result, it would get more workability and decrease capability of lateral buckling and local buckling, if the bottom flange of inverted T-shaped steel used as a form. Therefore. the objectives of this study are to investigate strength and behaviors of inverted T-shaped composite beam which web is encased by concrete and to grasp bending capacity and efficiency of composite by comparing and analyzing in test piece.

  • PDF

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.