• Title/Summary/Keyword: Section Shape Method

Search Result 521, Processing Time 0.027 seconds

A Study on the Comparison of Performances between Section Property Method and Section Shape Method for the Section Design of Vehicle Structure (차체단면설계를 위한 단면계수법 및 단면형상법의 성능비교에 관한 연구)

  • 서명원;이정환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-147
    • /
    • 2000
  • Section design of vehicle structure has been developed by two methods. One is the section property method which uses section property as a design variable. This method shows the tendency of an optimum section approximately. The other method is the section shape method which utilizes geometric parameter of section as a design variable. Practical solutions are obtained by this method. However, it is very expensive for large-scale problems due to the large number of geometric parameters. These two methods are compared through several sample problems. The finite element method is used for the structural and sensitivity analyses. The results are analyzed based on the number of function evaluations, the quality of cost function, the complexity of programing, and etc. The applications of both methods are also discussed.

  • PDF

Design of Intermediate Die for Spline Drawing (스플라인형상 인발을 위한 중간패스 단면형상 설계)

  • Lee, T.K.;Lee, J.E.;Lee, S.K.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • The cross section shape of intermediate die is one of important parameters to obtain dimensional accuracy of final product in shaped drawing process. Until now it has been designed by the experience or trial and error of the expert. In this study, the cross section shape of intermediate die fur spline shape is determined by the electronic field analysis, shape factor method. The result of the electronic field analysis, shape factor method has been compared with that of the present method. The effects of cross section shape on the dimensional accuracy were investigated by using FE analysis. And then the multi-stage shaped drawing experiments were performed to verify the results of FE analysis. As a result, the cross section shape from the electronic field analysis had the good dimensional accuracy. The electronic field analysis can be used for the method to obtain the cross section shape of intermediate die in shaped drawing process.

  • PDF

Prediction of Drawing Load in the Shape Drawing Process (이형인발공정 하중예측에 관한 연구)

  • Lee, T.K.;Lee, C.J.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine (자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화)

  • Kim, Do-Joong;Kim, Young-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method (주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가)

  • Lee, Kyung-koo;Kim, Dae-Hee;Joo, Eun-Hee;Kim, Young-Gi;Kim, Bong-Chan;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

Studies on Ceramic Powder Fabrication from Rice Phytoliths I. Pulverization of Bice Husks Using Rotating Knife Cutting Method and Changes of Their Densities (벼의 규소체로부터 세라믹 분말제조에 관한 연구 I. 회전칼날절단 방식에 의한 왕겨 분화와 그에 따른 밀도변화)

  • 강대갑
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • As the first step of study on fabrication of ceramic powders from phytoliths in rice, especially in rice husks, pulverization method of rice husks and the properties of milled rice husks were investigated. Impact methods, such as ball milling, were not meaningful for pulverizing elastic and thin fabric structure of rice husks. The most effective one was cutting method. In the present work, a rotating knife cutting method was applied to pulverizing rice husks. A 40-mesh screen was inserted under the rotating knives. The most portion of the milled powder was found in -50/+100 mesh section. Morphology of the milled rice husks revealed that the husks larger than 70 mesh were flake-like shape, at -70/+100 mesh section relatively equi-axed shape, at -170/+325 mesh section rod-like shape, and below 325 mesh section dust-like shape. Tap density of raw rice husks was about 0.1 $g/cm^3$, while those of milled rice husks were over $0.4 g/cm^3$. This meant that, for a given volume of reactor, raw material charge can be increased more that 4 times when using milled rice husks than unmilled one. True densities of unmilled and milled rice husks were higher than $1.4 g/cm^3$, and increased with decreasing milled sizes.

  • PDF

Formability of deep drawing process for L-shape cross section (L형 단면 딥드로잉 가공에서의 성형성)

  • 김상진;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.16-22
    • /
    • 1996
  • Two kinds of blank shapes, optimum and square, are adopted to investigate formbility. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose , rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup detph and strain distribution are measured experimetally for the products of the two kinds of blank shapes, which are optimum and square.It is confirmed that deeper cup without severe thickness reduction can be obtained fro the optimum shape.

  • PDF

3D Shape Reconstruction from Microscopic Serial Section Images (현미경 섹션 영상으로부터 3차원 형상 복구 기법)

  • 윤일동;이후성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2379-2382
    • /
    • 2003
  • This paper describes the design, implementation and results of a unified non-rigid image registration method for the purposes of 3D shape reconstruction from serial section images. The proposed method uses active contour-based segmentation and compensation of radial distortion. Experimental results show that multiple images can be segmented and reconstructed by active single contour as well as intra- and inter-section registration.

  • PDF

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (II) : Impact-Echo Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (II) : 충격-반향 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.36-41
    • /
    • 2013
  • Previous study showed that delamination region in concrete structures can be successfully visualized using mode shapes of delaminated concrete section. However, modal tests for this purpose to obtain mode shapes of the delaminated concrete section may not be applicable in practice since, to correctly obtain the mode shapes of the section, the location and the shape of the delamination region in a structure should be known in advance. Unfortunately those are normally unknown in a real structure. Therefore, a moving forward test method may be useful to obtain the mode shapes of the concrete section when the location and the shape of the delamination region are not known. In this study, impact-echo testing based mode shape estimation technique is proposed and experimentally validated for visualization of delamination region.

A study on the reidual stress and strain deu to welding of L and T shapes (L형 및 T형 잠류응력과 변형율에 관한 연구)

  • ;;Kim, Won Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.199-206
    • /
    • 1981
  • This paper presents a method of calculation of the stresses, the strains and the deflections due to welding in L shape and in T shape. Using step by step method of plasticity and establishing the equilibrium conditions in section, we calculated thermal stresses and strains during welding and in the final step of calculation we got the residual stresses, strains and the deflections due to welding. Also we measured the stresses and the strains with hole-drilling method and compared the results with the method of calculation presented in this paper. Because of its symmetry of section, the deflection due to welding in T shape is generally much less than that in L shape. The residual stresses are tensile in welded joints and HAZ, and compressive in base metal as butt welding of plates, but the compressive stresses in base metal decrease repidly as the points are away from welded joint except horizontal plates of T shape. The theoretical method of calculaiton presented in this paper coincides faily well with the experiment.