• Title/Summary/Keyword: Section Change

Search Result 1,402, Processing Time 0.029 seconds

A Linguistic Study on the Writing of Section 'Sets' in Middle School Mathematics Textbooks of 7-ga (중학교 수학교과서 7-가의 집합 단원 기술에 관한 언어학적 고찰)

  • Jeong Kwang-Taek
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.177-213
    • /
    • 2006
  • It is well known that the set theory is very fundamental and important in modern mathematics. So, the middle school mathematics begins with section 'Sets' which is introduced from the 2nd curriculum change. Therefore, it is natural to arrange the set theory at the beginning of middle school mathematics curriculum. But most of text-books develop the set theory section very rigorously and tightly under less considering the student's language level. The purpose of this study is to have effective learning of set theory section for every middle school students, we analysis the definitions and writing contents of section 'Sets' in each textbooks as a linguistic viewpoint, and investigate its further uses in each textbooks.

  • PDF

Design of Forming Rolls for Parts with a Symmetric U-type Cross-section that Varies Linearly and Symmetrically in the Longitudinal Direction (길이방향을 따라 선형 대칭적으로 변하는 좌우대칭 U형 단면을 가진 제품의 포밍 롤 설계)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-82
    • /
    • 2016
  • Recently, automobile industries have been developing many structural automotive parts made of thin, high-strength steel strips to produce safer and more environmentally friendly cars. The roll forming process has been considered one of the most efficient processes in manufacturing high-strength steel parts because it is a high-speed process that forms sheets in increments. However, most automotive parts vary longitudinally in their cross-sections. Therefore, it is difficult to apply the roll forming process to automotive parts made of high-strength steel. A variable section roll forming process has been proposed in recent studies. The rotational axes of the forming rolls are fixed, and the forming rolls have three-dimensional shape. As such, the cross-section of the part varies linearly along its length, and the angle between the bend line and longitudinal axis is less than 1 degree. Thus, the rate of cross-sectional variation along the length is relatively small. In this study, the rate of cross-sectional change along the length of a forming roll has been increased. Moreover, the angle between the bend line and longitudinal axis has been increased up to 15 degrees. The variable sections of the forming rolls have been designed for high strength steel parts with a symmetric u-type cross-section that varies linearly and symmetrically along the longitudinal axis.

Analysis on the Cause of Abrasion according to Deformation Types of Seaside Armor Stones in Saemangeum Seadike (새만금방조제 해측피복석의 변형유형에 따른 마모원인분석)

  • Son, Jae Gwon;Goh, Nam Young;Choi, Jin Kyu;Kim, Hak Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.187-196
    • /
    • 2013
  • This study is focused on analyzing the deformation types of seaside armor stones based of field survey in order to establish the cause of abrasion following the deformation of seaside armor stones. 1. The deformation of seaside armor stone in saemangeum sea dike was classified as three different types: floating, deviation, and abrasion. 2. It was discovered that the stones floated to the extent of maximum 50 m, as the result of inspecting floating stones which were situated on different ten places. 3. The average number of deviation in the high ocean wave section was four times more than that in the ordinary ocean wave section, as a result of comparing the deviation number of the ordinary ocean wave section and that of the high ocean wave section for the purpose of inspecting the relation between the deviation of armor stones and the effects of ocean wave. 4. The angular shape of armor stones seen in the initial construction period has been abraded smoothly, as result of comparing of the shape change of armor stones for the purpose of inspecting abrasion state of seaside armor stones. 5. It was discovered that the abrasion of armor stone was severe in the section of many floating stones, as a result of analyzing the levels of abrasion and the cumulative sections of floating stones for the purpose of investigating the cause of abrasion.

A Study on the Optical Bistable Characteristic of a Multi-Section DFB-LD (다전극 DFB-LD의 광 쌍안정 특성에 관한 연구)

  • Kim, Geun-Cheol;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.1-11
    • /
    • 2002
  • A multi-section DFB-LD shows optical bistability subject to externally injected light signal, then it has potential applications such as wavelength conversion and optical logic gates. In this paper, we have studied the optical bistability in multi-section DFB-LD using split-step time-domain model. It is confirmed that the multi-section DFB-LD, which is excited inhomogeneously, shows bistability. The optical bistable characteristics are investigated when input light is injected into a absorptive region. Simulation results show that multi-section DFB-LD works as a flip-flop depending on the set-reset optical pulse which has a few ns in switching time and a few pj in switching energy, so that it can act as a optical logic device. Besides, if we change the carrier lifetime and the differential gain coefficient, it is expected that the response time of optical output signal can be reduced.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.

Malware Analysis Based on Section, DLL (Section, DLL feature 기반 악성코드 분석 기술 연구)

  • Hwang, Jun-ho;Hwang, Seon-bin;Kim, Ho-gyeong;Ha, Ji-hee;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1077-1086
    • /
    • 2017
  • Malware mutants based on existing malware is widely used because it can easily avoid the existing security system even with a slight pattern change. These malware appear on average more than 1.6 million times a day, and they are gradually expanding to IoT / ICS as well as cyber space, which has a large scale of damage. In this paper, we propose an analytical method based on features of PE Section and DLL that do not give much significance, rather than pattern-based analysis, Sandbox-based analysis, and CFG, Strings-based analysis. It is expected that the proposed model will be able to cope with effective malicious code in case of combined operation of various existing analysis technologies.

Cyber-Physical System for Energy Management (에너지 관리를 위한 가상-물리 시스템)

  • Oh, Se-Range;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.279-286
    • /
    • 2021
  • Recently, the effort of enterprises are visualized to correspond for 4th industrial revolution and climate change. Reaching the operation of industrial facilities are one of these efforts and is actively progressing under identical condition between real and virtual world through introduction of cyber-physical system (CPS). However, the problem on no unified definition for CPS still exists. Thus, in this paper, we review the previous concept of CPS. We propose new concept of CPS with four sections such as real world section, communication section, virtual world section and management section. We also propose definite concept by classifying the layer of each section. In order to confirm the possibility of application for proposed concept of CPS, we applied simple motor. We compare the result for torque between real motor and virtual motor. Finally we confirm that the applicability of proposed concept of CPS is very high.

Evaluation of Ultrasonic Multiple Scattering Method to Improve the Accuracy of Fine Dust Measurement (비산먼지 측정 정확도 개선을 위한 시뮬레이션 초음파 다중 산란 알고리즘 검증)

  • Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.119-128
    • /
    • 2020
  • An ultrasonic multiple scattering simulation using cross-section of fine dust particles were proposed. These days, along with awareness of air pollution, social interest in fine dust is increasing. In the construction field, awareness of fine dust is increasing, and research on preparing various countermeasures is underway. The light scattering method fine dust meter currently in use is affected by environmental factors such as relative humidity, and reliability problems in terms of accuracy are continuously reported. However, the transmission of ultrasonic waves can directly reflect the physical change of the medium based on the mechanical wave. Using these advantages of ultrasonic waves, fine dust measurement simulation was performed using the scattering cross section and ultrasonic multiple scattering theory. The shape data of the fine dust particles were collected using a SEM (Scanning Electron Microscope), and a cross-section according to the fine dust particles was derived through numerical analysis. As a result of signal processing, the error for the number density corresponding to each cross-section is minimum 19, maximum 3455.

Modal Parameter variation of Steel Cable-stayed Bridge Considering Solar Radiation (일사에 의한 온도변화에 따른 강사장교의 동적특성 변화)

  • Kim Sang-Hyo;Jo Kwang-Il;Park Ju-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1040-1047
    • /
    • 2006
  • Bridges are exposed to constantly changing weather conditions and temperature. The temperature change is induced by a change in atmospheric temperature and solar radiation. Atmospheric temperature change acts on the whole structure. Thus, it is relatively easy to consider in the design. Solar radiation, however, causes un-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Un-uniform temperature distribution causes a torsional moment in bridge section and a deformation of bridge. A deformation can make differences of dynamic and static behavior of bridge. In this study, the method for analysis of static and dynamic behavior considering deformation and changes of material properties due to temperature variation was developed. By this method, it is found from dynamic analysis results that the change of frequency in analysis model is similar with test results of public used cable-stayed bridge. When a temperature goes down, a frequency goes up. And it is found that the change of frequency is affected by the change of material properties.

  • PDF

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.