• Title/Summary/Keyword: Secondary particles

Search Result 357, Processing Time 0.026 seconds

Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy (AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성)

  • H. J. Kim;J. H. Bae;Y. M. Kim;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

Preliminary Research to Support Air Quality Management Policies for Basic Local Governments in Gyeonggi-do (경기도 기초지자체 대기환경 관리정책 지원을 위한 선행 연구)

  • Chanil Jeon;Jingoo Kang;Minyoung Oh;Jaehyeong Choi;Jonghyun Shin;Chanwon Hwang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.275-288
    • /
    • 2023
  • Background: When basic local governments want to improve their air quality management policies, they need fundamental evidence, such as the effectiveness of current policies or scenario results. Objectives: The purpose of this study is to lay the groundwork for a process to calculate air pollutant reduction from basic local government air quality policies and provide numerical estimates of PM2.5 concentrations following improved policies. Methods: We calculated the amount of air pollutant reduction that can be expected in the research region based on the Gyeonggi-do Air Environment Management Implementation Plan issued in 2021 and guidelines from the Korean Ministry of Environment. The PM2.5 concentration variations were numerically simulated using the CMAQ (photochemical air quality model). Results: The research regions selected were Suwon, Ansan, Yongin, Pyeongtaek, and Hwaseong in consideration of population, air pollutant emissions, and geographical requirements. The expected reduction ratios in 2024 compared to 2018 are CO (3.0%), NOx (7.9%), VOCs (0.7%), SOx (0.1%), PM10 (2.4%), PM2.5 (6.1%), NH3 (0.05%). The reduced PM2.5 concentration ratio was highest in July and lowest in April. The expected concentration reduction of yearly mean PM2.5 in the research region is 0.12 ㎍/m3 (0.6%). Conclusions: Gyeonggi-do is now able to quickly provide air pollutant emission reduction calculations by respective policy scenario and PM2.5 simulation results, including for secondary aerosol particles. In order to provide more generalized results to basic local governments, it is necessary to conduct additional research by expanding the analysis tools and periods.

Effect of Chelating Agent on Li1.5Al0.5Ti1.5(PO4)3 Particles by Sol-gel Method and Densification (Sol-Gel법에 의한 Li1.5Al0.5Ti1.5(PO4)3 고체전해질 제조 및 chelating agent의 영향)

  • SungJoon Ryu;Seul Ki Choi;Jong Ho Won;MinHo Yang
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.394-401
    • /
    • 2023
  • Li1.5Al0.5Ti1.5(PO4)3 (LATP) is considered to be one of the promising solid-state electrolytes owing to its excellent chemical and thermal stability, wide potential range (~5.0 V), and high ionic conductivity (~10-4 S/cm). LATP powders are typically prepared via the sol-gel method by adding and mixing nitrate or alkoxide precursors with chelating agents. Here, the thermal properties, crystallinity, density, particle size, and distribution of LATP powders based on chelating agents (citric acid, acetylacetone, EDTA) are compared to find the optimal conditions for densely sintered LATP with high purity. In addition, the three types of LATP powders are utilized to prepare sintered solid electrolytes and observe the microstructure changes during the sintering process. The pyrolysis onset temperature and crystallization temperature of the powder samples are in the order AC-LATP > CA-LATP > ED-LATP, and the LATP powder utilizing citric acid exhibits the highest purity, as no secondary phase other than LiTi2PO4 phase is observed. LATP with citric acid and acetylacetone has a value close to the theoretical density (2.8 g/cm3) after sintering. In comparison, LATP with EDTA has a low sintered density (2.2 g/cm3) because of the generation of many pores after sintering.

Effects of Extrusion Ratio and Extrusion Temperature on Microstructure and Tensile Properties of SEN6 Magnesium Alloy (SEN6 마그네슘합금의 미세조직과 인장 특성에 미치는 압출비와 압출 온도의 영향)

  • H. J. Kim;J. Y. Lee;S. C. Jin;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.178-184
    • /
    • 2024
  • In this study, we investigated the effects of extrusion ratio and extrusion temperature on the microstructure and tensile properties of extruded Mg-6Al-0.3Mn-0.3Ca-0.2Y (SEN6) alloy. As the extrusion ratio and temperature increase, dynamic recrystallization during extrusion is promoted, leading to the formation of a fully recrystallized microstructure with increased grain size. Additionally, the increases in extrusion ratio and temperature lead to texture strengthening, exhibiting a higher maximum texture intensity. The extruded materials contain three types of secondary phases, i.e., Al8Mn4Y, Al2Y, and Al2Ca, with irregular or polygonal shapes. The quantity, size, distribution, and area fraction of the second-phase particles are nearly identical between the two materials. Despite its larger grain size, the tensile yield strength of the material extruded at 450 ℃ and an extrusion ratio of 25 (450-25) is higher than that of the material extruded at 325 ℃ and an extrusion ratio of 10 (325-10), which is mainly attributed to the stronger texture hardening effect of the former. The ultimate tensile strength is similar in the two materials, owing to the higher work hardening rate in the 325-10 extrudate. Despite differences in grain size and recrystallization fraction, numerous twins are formed throughout the specimen during tensile deformation in both materials; consequently, the two materials exhibit nearly the same tensile elongation.

Fine Structure and Detoxification Kinetics in Kupffer Cells after Injection of Endotoxin in Rats (내독소 투여에 의한 Kupffer 세포의 미세형태학적 해독반응)

  • Choi, Joon-Hyuk;Choi, Won-Hee;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.313-337
    • /
    • 1993
  • The aim of this study was to clarify the role of Kupffer cells in the mechanism of endotoxin-induced liver injury. The study on fine structure of Kupffer cells was performed after the injection of endotoxin. The endotoxin(Escherichia coli lipopolysaccharide 026 : B6. 1.5mg/100 g of body weight) was intraperitoneally injected in Sprague-Dewley rats. Animals were sacrificed at 1/4, 1/2, 1, 2, 4, 8, 16, 24, 72 and 120 hours after the injection of endotoxin. Livers were extirpated and processed to be examined by light and electron microscopy. The results obtained were summerized as follows: Early changes observed in liver after endotoxin injection included the increased number and hypertrophy of Kupffer cells, infiltration of neutrophils and presence of fibrin thrombi within the sinusoids. The continuous increase of the Kupffer cells in number with hypertrophy, congestion and infiltration of inflammatory cells within the sinusoids were observed. Hepatocytes showed fatty change and occasional necrosis. At 72 hours the congestion decreased. At 120 hours the number of Kupffer cells was increased, but the morphology of Kupffer cells became similar to that of the control group. The numbers and sizes of primary and secondary lysosomes and amount of euchromatin of Kupffer cells increased. Swellings and increase in number of mitochondria, Golgi complex, smooth endoplasmic reticulum, rough endoplasmic reticulum were evident. Microthrombi were present within the sinusoids. The swelling of rough endoplasmic reticulum and mitochondria, decrease of glycogen particles, fatty change, hypoxic vacuoles, pyknotic nuclei and occasional necrosis were observed in hepatocytes. At 72 hours the number of secondary lysosomes in Kupffer cells decreased. At 120 hours the morphology of Kupffer cells became similar to that of the control group. According to these results, it was postulated that the endotoxin was initially taken up by pinocytosis into Kupffer cells and degraded in secondary lysosomes of activated Kupffer cells. Kupffer cells may play an important role in the defense mechanism of liver during endotoxemia. The dysfunction of Kupffer cells and ischemia by sinusoidal microthrombi may cause liver injury.

  • PDF

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Study on the Casting Technology and Restoration of "Sangpyong Tongbo" (상평통보 주조와 복원기술연구)

  • Yun, Yong-hyun;Cho, Nam-chul;Jeong, Yeong-sang;Lim, In-ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.224-243
    • /
    • 2014
  • This study examined the materials and casting technology(cast, alloy, etc.) used in the manufacturing of bronze artifacts based on old literature such as Yongjae Chonghwa, Cheongong Geamul, and The Korea Review. In the casting experiment for restoration of Sangpyong Tongbo, a bronze and brass mother coin mold was made using the sand mold casting method described in The Korea Review. The cast was comprised of the original mold plate frame, wooden frame, and molding sand. Depending on the material of the outer frame, which contains the molding sand, the original mold plate frame can be either a wooden frame or steel frame. For the molding sand, light yellow-colored sand of the Jeonbuk Iri region was used. Next, the composition of the mother alloy used in the restoration of Sangpyong Tongbo was studied. In consideration of the evaporation of tin and lead during actual restoration, the composition of Cu 60%, Zn 30%, and Pb 10% for brass as stated in The Korea Review was modified to Cu 60%, Zn 35%, and Pb 15%. For bronze, based on the composition of Cu 80%, Sn 6%, and Pb 14% used for Haedong Tongbo, the composition was set as Cu 80%, Sn 11%, and Pb 19%. The mother coin mold was restored by first creating a wooden father coin, making a cast from the wooden frame and basic steel frame, alloying, casting, and making a mother coin. Component analysis was conducted on the mother alloy of the restored Sangpyong Tongbo, and its primary and secondary casts. The bronze mother alloy saw a 5% increase in copper and 4% reduction in lead. The brass parent alloy had a 5% increase in copper, but a 4% and 12% decrease in lead and tin respectively. Analysis of the primary and secondary mother coin molds using an energy dispersive spectrometer showed that the bronze mother coin mold had a reduced amount of lead, while the brass mother coin mold had less tin. This can be explained by the evaporation of lead and tin in the melting of the primary mother coin mold. In addition, the ${\alpha}$-phase and lead particles were found in the mother alloy of bronze and brass, as well as the microstructure of the primary and secondary coin molds. Impurities such as Al and Si were observed only in the brass mother coin mold.

Effect of Coagulants on the Behavior of Ultra Fine Dust in a Coal Firing Boiler (석탄 화력 보일러에서의 응집제 이용에 따른 초미세먼지 거동)

  • Ryu, Hwanwoo;Song, Byungho
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.84-89
    • /
    • 2020
  • Particulate matters of PM2.5, particularly focusing on 0.1~1 ㎛ decrease the efficiency of dust-collector due to the brownian-motion. This study is to verify the effect of coagulant on the particle size distributions of potassium and PM2.5. The activated coagulant was spayed to the coal fired fluidized bed combustion boiler by the weight ratio of 1,200 : 1 = coal : coagulant, and the size distributions of captured particles at both the cyclone (FP) and electrostatic precipitator (EP) were measured. As the result of XRP analysis, the potassium content of FP increased to 13.33% (averagely from 1.65% to 1.87%) and, in EP at 17.68% (averagely from 1.65% to 2.03%). And it was confirmed by the particle size distribution analyzer and SEM image analysis that the distribution rates of PM2.5 decreased at 89.53% on average in FP, and at 88.57% in EP. The total dust concentration (mg/㎥) confirmed by tele-monitering system (TMS) decreased during the primary test from 2.6 to 1.7~1.9 and also the secondary test from 2.9 to 1.7~1.9.

Magnetic Properties and Structure of Co-precipitated Barium Ferrite (BaM) Powders (공침법으로 합성한 바륨 페라이트(BaM) 분말의 결정구조와 자기적 성질)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.134-142
    • /
    • 2010
  • Barium ferrite ($BaFe_{12}O_{19}$) powders were synthesized by the co-precipitation method. $Fe^{3+}:Ba^{2+}$ mole ratio was fixed 8 and relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. The effects of the pH (= 8, 9, 10), calcination temperature and time on the morphology, structure and magnetic properties of the barium ferrite particles are characterized using XRD, FESEM, and VSM respectively. Coercivity and magnetization value of powders were changed with calcination temperature and time, relative amount of $Fe^{3+}$ and $Ba^{2+}$ and pH. Single-phase barium ferrite was obtained when pH value was 9 in the investigated range of $Fe^{3+}:Ba^{2+}$ relative amount and secondary phases were appeared at $Fe^{3+}:Ba^{2+}$ relative amount of 14.4 : 1.8. The largest value of magnetization (65.7 emu/g) was obtained when $Fe^{3+}:Ba^{2+}$ mole ratio was 12.8 : 1.6 and calcination temperature was $900^{\circ}C$ with air calcination atmosphere. The largest value of coercivity (5280 Oe) was obtained with $O_2$ calcination atmosphere.

A Study on the Engineering Characteristics of Soil - Fly Ash - Bentonite Liner (플라이애시-벤토나이트 혼합 점토차수재의 공학적 특성에 관한 연구)

  • Lee, Changhwan;Kim, Myeongkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • As household and industrial wastes continue to rapidly increase every year, the demands for landfill sites are also increasing. However, the construction of landfill sites causes many problems due to the high costs of liners, while the leachate from the landfills generates secondary contamination of surrounding lands and groundwater. The purpose of this study is to determine the proper mixing ratio to meet the liner conditions (must be less than $1{\times}10^{-7}cm/sec$), using the local soil as the main material and using fly ash, bentonite, and cement as the mixing materials. The possibility of using this mixture as the liner for landfill sites was examined. To determine the proper mixing ratio, this study conducted basic physical properties tests, compaction tests, consolidation tests, and uniaxial compression tests. It was found that the higher the ratio of bentonite, the lower the coefficient of permeability, and the higher the ratio of fly ash, the higher the coefficient of permeability. The reason for this is that, while bentonite expands and fills pores, fly ash cannot fill the pores because the particles have a round shape and do not have adhesion. In conclusion, the optimum coefficient of permeability that meets the landfill liner condition was obtained when the ratio of bentonite was 15% or higher. If fly ash was mixed, the landfill liner condition was met when the ratio of bentonite was 15% or higher and the ratio of fly ash was 20% or lower.

  • PDF