• Title/Summary/Keyword: Secondary organic aerosol

Search Result 46, Processing Time 0.026 seconds

Promises and Risks of Unsaturated Volatile Organic Compounds: Limonene, Pinene, and Isoprene

  • Jin, Kyong-Suk;Jun, Mi-Ra;Park, Min-Ji;Ok, Seon;Jeong, Jae-Han;Kang, Hye-Sook;Jo, Wan-Keun;Lim, Ho-Jin;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.447-456
    • /
    • 2008
  • Limonene, pinene, and isoprene are abundant and ubiquitous volatile organic compounds (VOCs) which are found in various natural products and also produced from various manufacture processes. Limonene and pinene are major components of food additives and household products for enrichment of good flavors and elimination of malodors, and isoprene is a basal motif of monoterpenes such as limonene and pinene. They have shown many beneficial effects such as chemopreventive, chemotherapeutic, and antioxidant activities. Upon certain conditions, however, adverse effects of these compounds on human health have also been reported. Although they do not seem to have acute and severe toxicity to human, they can easily generate secondary organic aerosols (SOAs) when they react with oxygen and/or ozone, which have shown certain toxic effects on experimental animal models as well as on humans. Numerous household and scented products containing limonene, pinene, and isoprene are widely used in these days. However, biological consequences upon exposure to these products are largely unknown. The aim of this review is to summarize and analyze the current understanding on the biological effects of VOCs, in particular limonene, pinene, and isoprene, as well as their SOAs.

Chemical Mass Composition of Ambient Aerosol over Jeju City (제주시 지역 미세먼지의 변동과 화학적 구성 특성)

  • Lee, Ki-Ho;Kim, Su-Mi;Kim, Kil-Seong;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.495-506
    • /
    • 2020
  • This study investigated the nitrate formation process, and mass closure of Particulate Matter (PM) were calculated over the urbanized area of Jeju Island. The data for eight water-soluble inorganic ions and nineteen elements in PM2.5 and PM10 were used. The results show that the nitrate concentration increased as excess ammonium increased in ammonium-rich samples. Furthermore, nitrate formation was not as important in ammonium-poor samples as it was in previous studies. According to the sum of the measured species, approximately 45~53% of gravimetric mass of PM remained unidentified. To calculate the mass closure for both PM2.5 and PM10, PM chemical components were categorized into secondary inorganic aerosol, crustal matter, sea salt, trace matter and unidentified matter. The results by the mass reconstruction of PM components show that the portion of unidentified matter was decreased from 52.7% to 44.0% in PM2.5 and from 45.1% to 29.1% in PM10, despite the exclusion of organic matter and elemental carbon.

A Study on the Characteristics of Carbonaceous Compounds in PM2.5 Measured in Chuncheon and Seoul (춘천과 서울에서 측정한 PM2.5 내 탄소성분의 농도 특성에 관한 연구)

  • Jung, Jin-Hee;Kim, Sung-Rak;Choi, Bo-Ra;Kim, Kye-Sun;Huh, Jong-Bae;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.141-153
    • /
    • 2009
  • $PM_{2.5}$ samples were collected from December 2005 through November 2007 in two cities including Chuncheon and Seoul in order to investigate the characteristics of carbonaceous aerosol. The average $PM_{2.5}$ concentration in Seoul ($43.2{\mu}g/m^3$) was approximately 1.2 times higher than that measured in Chuncheon ($36.1{\mu}g/m^3$), however there was no statistical difference on $PM_{2.5}$ concentration between those two cities. Backward trajectories were passing through Seoul area before arriving Chuncheon for about half of the samples, and $PM_{2.5}$ largely increased in Chuncheon when back-trajectories originated from Seoul area. Total carbon (TC) was calculated as sum of OC and EC, contributing 20.5% and 29.2% to total $PM_{2.5}$ mass in Chuncheon and Seoul, respectively. The average ratio of secondary organic carbon (SOC) to total OC was 40% at both sites, and the highest SOC concentration was observed in summer probably due to enhanced volatilization of organic species and active photochemical reaction. J value was calculated to determine if acidic condition affected the increase of secondary organic carbon. In both Chuncheon and Seoul SOC/OC ratios were fairly enhanced when J<100% of acidic condition.

Nanoparticle Formation from a Commercial Air Freshener at Real-exposure Concentrations of Ozone

  • Vu, Thai Phuong;Kim, Sun-Hwa;Lee, Seung-Bok;Shim, Shang-Gyoo;Bae, Gwi-Nam;Sohn, Jong-Ryeul
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Occupational nanomaterial exposure is an important issue in the manufacture of such products. People are also exposed to various nanoparticles in their living environments. In this study, we investigated nanoparticle formation during the reaction of ozone and volatile organic compounds (VOCs) emitted from a commercial air freshener, one of many widely used consumer products, in a $1-m^3$ reaction chamber. The air freshener contained various VOCs, particularly terpenes. A petri dish containing 0.5 mL of the air freshener specimen was placed in the bottom of the chamber, and ozone was continuously injected into the center of the chamber at a flow rate of 4 L/min with an ozone concentration of either 50, 100 or 200 ppb. Each test was conducted over a period of about 4 h. The higher ozone concentrations produced larger secondary nanoparticles at a faster rate. The amount of ozone reacted was highly correlated with the amount of aerosol formation. Ratios of reacted ozone concentration and of formed particle mass concentration for the three injected ozone concentrations of 50, 100 and 200 ppb were similar to one other; 4.6 : 1.9 : 1.0 and 4.7 : 2.2 : 1.0 for ozone and aerosol mass, respectively.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Investigation of PM2.5 Pollution Episodes in Gwangju (광주지역 PM2.5의 고농도 오염현상 조사)

  • Yu, Geun-Hye;Cho, Sung-Yong;Bae, Min-Suk;Lee, Kwon-Ho;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.269-286
    • /
    • 2015
  • 24-hr integrated $PM_{2.5}$ measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify $PM_{2.5}$ pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average $PM_{2.5}$ concentration was $37.7{\pm}23.6$ $(6.0{\sim}121.5){\mu}g/m^3$. Concentrations of secondary ionic species; $NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$ was on average $5.54{\mu}g/m^3$ (0.28~ 20.86), $7.60{\mu}g/m^3$ (0.45~ 33.53), and $9.05{\mu}g/m^3$ (0.50~ 34.98), accounting for 13.7% (4.6~ 22.7), 18.6% (2.9~ 44.8), and 22.9% (4.9~ 55.1) of the $PM_{2.5}$ concentration, respectively. Average OC and EC concentrations were $5.22{\mu}g/m^3$ and $1.54{\mu}g/m^3$, taking possession of 4.6 and 22.2% (as organic mass) of the $PM_{2.5}$, respectively. Frequencies at which 24-hr averaged $PM_{2.5}$ exceeded a 24-hr averaged Korean $PM_{2.5}$ standard of $50{\mu}g/m^3$ (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, $NO_3{^-}$ and $SO_4{^{2-}}$ in winter, of $NO_3{^-}$ and $SO_4{^{2-}}$ in spring, and of $SO_4{^{2-}}$ in summer. Potential source contribution function results indicate also that $PM_{2.5}$ episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the $SO_4{^{2-}}$ driven by photochemistry of $SO_2$ in summer.

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area (광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사)

  • Park, Seung Shik;Cho, Sung Yong;Kim, Seung Jai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily $PM_{2.5}$ measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, $NO_3^-$, $SO_4^{2-}$ and $NH_4^+$, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and $3.31{\mu}g/m^3$, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the $PM_{2.5}$, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low $SO_4^{2-}/(SO_4^{2-}+SO_2$) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.

Characteristics of Fine Particles Measured in Two Different Functional Areas and Identification of Factors Enhancing Their Concentrations (강원도 춘천과 영월에서 측정한 미세먼지 농도 특성 및 고농도 원인 분석)

  • Cho, Sung-Hwan;Kim, Hyun-Woong;Han, Young-Ji;Kim, Woo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.100-113
    • /
    • 2016
  • In this study, the characteristics of $PM_{2.5}$ and $PM_{2.5-10}$ concentrations were identified in two different functional areas including Chuncheon and Youngwol, Korea. Even though the anthropogenic emission rates of $PM_{2.5}$ and $PM_{10}$ are approximately four times higher in Youngwol than in Chuncheon their atmospheric concentrations were statistically higher in Chuncheon. In Chuncheon, both $PM_{2.5}$ concentrations and the ratio of $PM_{2.5}/PM_{10}$ increased as relative humidity (RH) increased possibly because the inorganic and/or organic secondary aerosols were actively formed at high RH. This result was also supported by that $PM_{2.5}$ concentration was enhanced under the fog and mist conditions in Chuncheon. On the other hand, both $PM_{2.5}$ and $PM_{2.5-10}$ concentrations clearly increased with the southerly winds blown from the cement production facility in Youngwol. In addition, high $PM_{2.5-10}$ concentrations were observed with high wind speed, low relative humidity, and high $NO_2$ concentrations in Youngwol, suggesting that $PM_{2.5-10}$ was generated through the physical process including crushing and packing procedures followed by resuspension from cement and lime factory.