• 제목/요약/키워드: Secondary injection flow

검색결과 98건 처리시간 0.028초

2차 공기 주입 조건 변화에 따른 소형 소각로 내부의 유동장 분석 (Analysis of the Gas Flow Field of Primary Combustion Chamber with the Conditions of Secondary Air Injection)

  • 최병대;김성준
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.9-17
    • /
    • 2002
  • This analysis is aimed to find out how the conditions of secondary air injection affects the residence time and the turbulence energy of flue gas and flow field in a small incinerator. A commercial code, PHOENICS, is used to simulate the flow field of an Incinerator. The computational grid system is constructed in a cartesian coordinate system In this numerical experiment, an independent numerical variable is the conditions of secondary air injection and dependants are the residence time of flue gas and the mean value of turbulence energy in a primary combustion chamber. The flow field and the distribution of turbulence energy are analysed to evaluate the residence time of flue gas and the turbulence energy The computational results say that the tangential injection of secondary air make the residence time much longer than the radial injection and that the radial injection of secondary make turbulence much stronger than the tangential injection.

  • PDF

2차 분사의 위치 변화에 따른 로켓노즐 출구에서의 추력 분포 변화 (The Variation of Thrust Distribution of the Rocket Nozzle Exit Plane with the Various Position of Secondary Injection)

  • 김성준;이진영;박명호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.45-53
    • /
    • 2000
  • A numerical study is done on the thrust vector control using gaseous secondary injection in the rocket nozzle. A commercial code, PHOENICS, is used to simulate the rocket nozzle flow. A $45^{\circ}-15^{\circ}$ conical nozzle is adopted to do numerical experiments. The flow in a rocket nozzle is assumed a steady, compressible, viscous flow. The exhaust gas of the rocket motor is used as an injectant to control the thrust vector of rocket at the constant rate of secondary injection flow. The injection location which is on the wall of rocket is chosen as a primary numerical variable. Computational results say that if the injection position is too close to nozzle throat, the reflected shock occurs. On the other hand, the more mass flow rate of injection is needed to get enough side thrust when the injection position is moved too far from the throat.

  • PDF

이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석 (Performance Analysis of SITVC System with Various Secondary Injection Conditions)

  • 배지열;송지운;김태환;조형희;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.116-121
    • /
    • 2011
  • SITVC 시스템의 이차분사 노즐 분사 조건 변화에 따른 시스템 성능 변화를 수치적으로 연구하였다. 해석에 사용된 형상은 3차원 종형 수축-팽창 노즐이고 측면에 8개의 이차분사 노즐을 가진다. 노즐 내부 유동은 전압이 70bar이며 300K의 cold flow로 가정하였다. 이차 유동의 유량 변화와 노즐 작동 조건 변화를 고려하였다. 상용코드인 Ansys Fluent v.13을 통해 해석하였고, 난류모델은 Spalart-Allmaras model(1- equation)를 사용하였다. 충격파의 수치적 진동을 막고 충격파의 불연속성을 잘 해석하기 위해 AUSM+ scheme을 사용하였다. Axial thrust, side force, system specific impulse ratio 와 같은 성능 변수를 사용해 시스템 성능을 평가하였다.

  • PDF

스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구 (Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine)

  • 이승재;함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.

2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구 (A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection)

  • 임채민;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I) (Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I))

  • 김형문;이상길;윤웅섭
    • 한국추진공학회지
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1999
  • 풍전압력비와 2차 제트 분사구 위치에 따른 2차분사 추력방향 제어(SITVC: secondary injection thrust vector control) 성능특성 변화를 수치해석하였다. 2차 제트 분사에 의해 간섭된 수축-팽창노즐 내부의 초음속유동장을 대상으로 3차원 비정상 오일러 방정식을 내재적으로 근사인자분해된 Beam과 Warming의 방법을 사용하여 차분하였으며, 2차 분사 제트에 의한 추력비 비추력비 및 전향각에 대한 성능변화를 고찰하였다. 연구결과 측추력과 비추력비는 2차 분사 질량유량에 비래하여 증가하는 반면, 비추력 성능은 감소되어 2차 분사 질량유량이 적을 수록 추력 성능손실이 적어지는 것으로 나타났다. 또한 동일한 전압력비에 대하여 2차 제트 분사위치가 노즐의 하류에 위치할수록 고속기 주유동과의 간섭에 의한 강한 충격파로 인하여 측추력과 측비추력의 증가와 함께 추력방향 제어성능이 향상됨을 알 수 있었다.

  • PDF

2차 유동 분사에 의한 제트 유동의 추력 제어에 관한 연구 (Study of the Thrust Vector Control using a Secondary Flow Injection)

  • 정성재;;김희동;안재문;정동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.119-122
    • /
    • 2002
  • In general, Liquid Injection Thrust Vector Control(LITVC) is accomplished by injecting a liquid into the supersonic exhaust flow through holes in the wall of the propulsion nozzle. This injection flow field is highly complicated and detailed flow physics associated with the secondary flow injection should be known far the practical design and use of the LITVC system. The present study aims at understanding the LTTVC flow field and obtaining fundamental design parameters for LITVC. The experimentations were performed in a supersonic blow-down wind tunnel. Compressed, dry air was used for both the main exhaust and injection flows but the pressures of these two flows were controlled independently. The location of the injection holes was changed and the pressures of the two streams were also changed between 2.0 and 15.0 bar. The effectiveness of LITVC was discussed in details using the results of the pressure measurements and flow visualizations

  • PDF

초음속 노즐 내 2차 분사 slot 개수에 따른 유동 특성 변화 (Effect of Secondary Flow Injection on Flow Charncteristics in 3-Dimensional Supersonic Nozzle)

  • 송지운;이종주;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3529-3533
    • /
    • 2007
  • The advantages of the SITVC(secondary injection thrust vector control) technique over mechanical thrust vector systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design mach number 3. The effect of injection hole number and shape of secondary jet on the mach number distribution of SITVC were investigated. The standard ${\kappa}$ - ${\epsilon}$ turbulence model solved the complex three-dimensional nozzle flows perturbed by the secondary gas jet. The numerical code was validated by experiment. The results showed that the mach number distribution of circular and square nozzle are similar each other. As number of second injection hole increasing, a effect of deflection was decreased.

  • PDF

쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구 (Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator)

  • 이금배
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

추진제트의 Fluidic Thrust Vectoring에 관한 수치해석 연구 (Computational Study on the Fluidic Thrust Vectoring of a Propellant Jet)

  • 김재형;임채민;김희동;조재필
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2003
  • 2차 유동을 이용한 추력제어법은 추진노즐 벽면에 설치된 injection hole을 통해 유동을 초음속유동장으로 분산하여 추력을 제어하는 방법으로, 최근 추진시스템의 응용에서 많은 주목을 받고 있다. 본 연구에서는 수치해석 방법을 이용하여 SITVC 유동장을 상세히 연구한다. 수치계산에는 3차원, 압축성 Navier-Stokes방정식이 적용되었으며, 그 결과는 이전의 유용한 실험결과와 비교한다. 본 수치해석 결과로부터 2차 유동의 유입에 의해 야기되는 충격파와 추진노즐로부터 방출된 제트구조를 상세하게 가시화한다.

  • PDF