• Title/Summary/Keyword: Secondary barrier

Search Result 110, Processing Time 0.03 seconds

Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction (멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가)

  • Jeong, Yeon-Jae;Kim, Jeong-Dae;Hwang, Byeong-Kwan;Kim, Hee-Tae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

Estimation of Fatigue Characteristics Using Weibull Statistical Analysis with Aramid Fiber on LNGC Secondary Barrier (LNGC 2차 방벽에 적용된 Aramid 섬유의 Weibull 통계 분석을 이용한 피로특성 평가)

  • Park, Jin Hyeong;Oh, Dong Jin;Kim, Min Gyu;Kim, Myung Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Insulation systems in Liquefied Natural Gas Carriers (LNGC) are vulnerable to sloshing impact and fatigue loads because of waves. If gas leaks into the primary barrier, the Flexible Secondary Barrier (FSB) prevents the leakage of gas in this system. Fatigue strength of the FSB largely depends on the behavior of composite materials. In this study, a new system is applied to the FSB using aramid fiber to improve the fatigue strength of the secondary barrier, with the intention of replacing conventional E-glass fibers. The manufacturing method involved varying the ratio of the aramid fiber to the E-glass fiber for optimum design of the FSB. The fatigue tests results of the secondary barrier using aramid fiber were superior to that using E-glass fiber. The statistical analysis is performed to obtain the fatigue test results and estimate the probability of failure as well as the design guideline of LNGC secondary barriers.

Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating (2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석)

  • Kang, Young-Seok;Rhee, Dong Ho;Cha, Bong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

Effect of Surface Treatment on Adhesive Bonding Strengh of Composite Material for Cryogenic Application (극저온용 복합재료의 접착부 강도에 미치는 표면처리 효과에 대한 연구)

  • Ahn, Myoung-Ho;So, Yong-Shin;Park, Dong-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.28-28
    • /
    • 2010
  • The secondary barrier of cargo containment for membrane LNG tank is composed of composite materials such as rigid triplex (rigid secondary barrier, RSB) and flexible triplex (flexible secondary barrier, FSB). RSB and FSB are adhered to each other using an epoxy adherent and the quality of the secondary barrier depends on the bonding strength between them. The bonding strength between RSB and FSB is greatly influenced by the surface condition of RSB prior to joining. In this study, the effect of surface condition prior to joining on the joint strength and the fracture mode occurred between RSB and FSB have been examined in order to establish a proper surface treatment method for improving the bonding strength at the temperature of $-170^{\circ}C$.

  • PDF

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Park, Bum-Jin;Lee, Hee-Bum;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

Effects of Basalt Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (현무암섬유를 이용한 LNG 화물창 2차 방벽의 기계적 특성에 대한 연구)

  • Woo-Seung Noh;Hae-Reum Shin;Seung-June Yeo;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • Recently, with the strengthening of environmental regulations, there has been an increasing interest in eco-friendly energy sources, leading to a trend of the increasing scale of Cargo Containment Systems (CCS) for Liquefied Natural Gas (LNG) carriers. Among these systems, membrane tanks have gained popularity in LNG transport vessels due to their superior spatial utilization and competitiveness. However, due to high initial investment costs and the difficulty in repair in case of damage, a safety layer, the secondary barrier, must be installed without fail. In this study, in order to apply a new secondary barrier to the existing membrane-type LNG CCS, tests were conducted on the fiberglass layer previously used in the Triplex-Flexible Secondary Barrier (FSB), substituting it with basalt fiber. Tensile and vertical tensile tests were performed to assess the newly applied material. Environmental tests were conducted at room temperature (25℃) and extremely low temperatures (-170℃), considering the temperatures to which substances may be exposed during LNG vessel operations. The basalt-FSB produced in this study demonstrated superior results compared to the specifications of the existing product, confirming its potential applicability for implementation.

Characterization and Enhancement of Package O2 Barrier against Oxidative Deterioration of Powdered Infant Formula

  • Jo, Min Gyeong;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.13-16
    • /
    • 2018
  • Powdered infant formula is susceptible to oxidation in the presence of oxygen. Even though the product is usually packaged in nitrogen atmosphere, the oxygen ingress through the package layer may occur in case of flexible pouches and affects the oxidation of the product. $O_2$ barrier of the package is thus important variable to protect the product from oxidative deterioration. $O_2$ barrier property was investigated for aluminum-laminated small pillow packs of $3.5{\times}17.5cm$. Storage temperature and combination of primary and secondary packages were evaluated as variables affecting the barrier for conditions of empty pouch flushed with nitrogen. Apparent oxygen transmission rate of the primary package exposed to air was $2.32{\times}10^{-3}mL\;(STP)\;atm^{-1}\;d^{-1}$ at $30^{\circ}C$ and its temperature dependence could be explained by activation energy of $28.5kJ\;mol^{-1}$ in Arrhenius relationship. The additional secondary package of nylon/PE film containing 20 primary packages was ineffective in modulating package $O_2$ transmission and was only marginally helpful when combined with oxygen scavenger. The same was true in suppressing the product oxidation when the primary package was filled with 14 g of the formula.

Optimal Transducer Positions of an Active Noise Control System with an Opening in an Enclosure (능동방음벽 시스템에서의 제어음원 위치에 관한 고찰)

  • 백광현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.164-171
    • /
    • 2004
  • Active control techniques have been used in wide areas of noise and nitration control engineering and a noise barrier is one of them. Omoto's work in 1993 would be one of the fundamental and systematic studies on the actively controlled noise barrier, in which he used equal number of control sources and error sensors. The error sensors were placed uniformly along the top edge of the noise barrier with equal distance apart and the control sources were placed in the exactly same way some distance apart from the error sensors. Since then, a couple of studies were made on the secondary sources'arrangement rather than the optimality of secondary source positions. Shao's results showed that arc shaped arrangement for secondary sources is better than the straight line one, and later work of Yang showed that the more important factor is the average distance between the primary source and secondary sources. However, since these studies were all executed with a simple uniform distribution of the secondary sources along the straight line or arc, it is difficult to conclude which arrangement is superior In order for the fare comparison. the optimality of the source positions in each arrangement must be given in prior. The primary goal of this study is focused on this aspect and some major factors were investigated and compared. The computer simulation results showed that the arc shaped arrangement is marginally better than the straight line one, and more importantly slightly tuned position can greatly improve the performance of the control system.

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution (Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.137-143
    • /
    • 2021
  • In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

Effects of Aramid Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (LNG 화물창 2차 방벽의 기계적 성능에 아라미드 섬유가 미치는 영향에 대한 연구)

  • Bang, Seoung-Gil;Yeom, Dong-Ju;Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.206-213
    • /
    • 2021
  • Recently, although the size of the LNG Cargo Containment System (CCS) has been increasing, the secondary barrier is reported to remain unchanged, and the conventional Flexible Secondary Barrier (FSB) used in Mark-III type has been pointed out to be vulnerable to failure owing to thermal and cyclic loads. In this respect, a tensile test was carried out to verify the reinforcing effect of FSB using aramid fiber on weft compared to the conventional FSB. In order to consider the LNG leakage situation, a series of tensile tests were conducted from ambient to cryogenic temperature, and mechanical properties were evaluated for each fiber direction on account of anisotropy. Tensile behavior and fracture analyses were performed to confirm the mechanical properties of each material according to temperature. Tensile test results proved that replacing the aramid fiber instead of E-glass fiber used on weft is effective in enhancing the mechanical properties.