• 제목/요약/키워드: Secondary angle

검색결과 398건 처리시간 0.02초

Flow Characteristics of secondary recirculation region for using Stereoscopic PIV in a Liquid Fuel Ramjet Combustor (Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 측정)

  • Kim S. J.;Choi J. H.;Park C. W.;Sohn C. h.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.115-120
    • /
    • 2003
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor are investigated using CFD and 3-D Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach0.3 at inlet. Both computational and experimental results showed the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation region increased with upon closer center of axial combustor. Since the performance of combustor depends on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the recirculation size as frame holder.

  • PDF

The Study on the Growth and Branching of Stolon in Korean Lawn(Zoysia japonica Steud.) (한국 잔디의 포복경 생장과 분지에 관한 연구)

  • 김용진;장남기
    • Asian Journal of Turfgrass Science
    • /
    • 제11권2호
    • /
    • pp.117-124
    • /
    • 1997
  • This study was carried out to investigate the growth and branching pattern of stolons at Korean lawn(Zoysia japonica Steud.) in the field condition. The results were summarized as follows ; 1.About 80% of observed lawns had one primary stolon. Among the lawns with several primary stolons, 30% of them had two primary stolons, 63% had three, and 7% had four. 2.The angles between the primary stolon and the shoot were increased from 0˚ to 52˚ according to the node order from the terminal shoot apex, and reached maximum angle at the 7th node. 3.The internode length was the longest in the middle position of stolon, and its growing rate which depends on months was increased from May to September. 4.The branching angles between primary and secondary stolon were from 44˚ to 53˚ in each node. The average left branching angle was about 48.20, right branching angle 47.8˚, and the total average branching angle was 48.00. 5.The rate of initial brabch was the highest at the 10th node in May, the 7th node in July and the 5th node in September. But, the initial branching rate at the 7th node in July was higher than any other that at the 10th node in May and the 5th node in September. 6.The distribution rate of secondary stolon in each node of primary stolon was the highest at the 7th node. 7.when the terminal shoot apex of primary stolon was damaged mechanically, the branching rate at the first node after the damaged region was highly increased to 62%. The results of this study may be suggested that the secondary stolon begins to branch with the angle of 480 from the 7th node of the normal primary stolon, and those may be used as a basic data for the branching simulation in lawn.

  • PDF

The concept of the angle presented in the middle school mathematics textbooks (중학교 수학교과서에 제시된 각 개념 제시 양상)

  • Kim, Soo mi;Heo, Hae ja
    • The Mathematical Education
    • /
    • 제61권2호
    • /
    • pp.305-322
    • /
    • 2022
  • Angle has a variety of aspects, such as figure, measurement, and rotation, but is mainly introduced from a figure perspective and a quantitative perspective of the angle is also partially experienced in the elementary mathematics textbooks. The purpose of this study was to examine how the angle concept introduction and development pattern in elementary school mathematics textbooks are linked or changed in middle school mathematics textbooks, and based on this, was to get the direction of writing math textbooks and implications for guidance. To this end, 57 math textbooks for the first grade of middle school were collected from the first to the 2015 revised curriculum. As a result of the study, it was found that middle school textbooks had a greater dynamic aspect of each than elementary school textbooks, and the proportion of quantitative attributes of angle was higher in addition to qualitative and relational attributes. In other words, the concept of angle in middle school textbooks is presented in a more multifaceted and complex form than in elementary school textbooks. Finally, matters that require consensus within elementary, secondary, and secondary schools were also proposed, such as the use of visual expression or symbol, such as the use of arrows and dots, and the use of mathematical terms such as vertex of angle and side of angle.

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

Flow Characteristics of Secondary Recirculation Region in a Liquid Ramjet Combustor (액체 램젯트 엔진 연소기내의 이차유동 특성)

  • C. H. Sohn;J. S. Hong;S. Y. Moon;C. W. Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • The flow characteristics of secondary recirculation region in a liquid fuel ramjet combustor are measured using PIV method. The model combustor has two rectangular inlets that form 90 degree angle each other. The tested angles of the air intakes were 30, 45 and 60. Three guide vanes are installed in each rectangular inlet to improve the flow stability. The experiments are performed in the water tunnel test with the same Reynolds number as the case of Mach 0.3 at the inlet. PIV software is developed to measure the characteristics of the flow field in the combustor. The accuracy of the developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the secondary recirculation flow occurred at the front junction of inlet main stream and combustorchamber. The size of secondary recirculation regions are increased with increasing air inlet angles. Since the performanceof combustor is very dependant on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the both recirculation size as a frame holder.

  • PDF

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제12권9호
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors (왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

A Study on the Flow Characteristics of developing transitional Steady Flows in the Entrance Region of a Curved Duct (곡관덕트의 입구영역에서 천이정상유동의 유동특성에 관한 연구)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.33-39
    • /
    • 1999
  • In this paper an experimenatal investigation of characteristics of developing ransitional steady flows in a square-sectional $180^{\circ}$ curved duct is presented, The experimental study is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Dopper Velocimeter(LDV) system. The flow development is found to depend upon Dean number and curvature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows becomes strong from $120^{\circ}$ of bended angle on the duct. The entrance length of transitional steady flow is obtained to $120^{\circ}$ of bended angle of the duct in this experimental conditions.

  • PDF