• Title/Summary/Keyword: Secondary analysis

Search Result 4,998, Processing Time 0.032 seconds

Fininte Element Analysis of Squirrel-cage Induction Motor Taking into account the End-ring (엔드링을 고려한 농형 유도전동기의 2차원 유한요소해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.49-55
    • /
    • 1999
  • This paper proposes an efficient 2D Finite Element Method(FEM) taking into account the end-ring of three phase squirrel-cage induction motors. The parameters of the squirrel-cage induction motor such as conductivity of secondary conductor have an effect on the characteristics of a motor. Especially, if the characteristic analysis is done without considering the end-ring, the good results can not be obtained. Therefore, we calculated a new resistivity of the secondary conductor including the end-ring's resistance to apply the 2D FEM. Then, the performances of the motors are analyzed by using the new resistivity of secondary conductor which contains the end-ring resistivity. The validity of the proposed method is verified by comparing the numerical results with experimental ones.

  • PDF

Numerical Analysis of Secondary Injection for Thrust Vector Control on 2-Dimensional Supersonic Nozzle (2차원 초음속 노즐에서의 2차 유동분사에 의한 추력 방향 제어 특성의 수치적 해석)

  • 오대환;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The advantages of the SITVC (Secondary Injection for Thrust Vector Control) technique over mechanical thrust vectoring systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. The optimal operating conditions of SITVC were investigated using in-house developed compressible flow analysis codes. Numerical experiments were used to examine the impact of the thrust vector direction with a variety of injection positions, mass flow rates, and injection angles on the two-dimensional expansion cone of a supersonic nozzle. The computational results showed that the optimal position of the secondary injection, with the maximum deviation angle and side thrust, was where the oblique shock generated by the secondary injection reached the end of the nozzle exit.

  • PDF

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

A Study on Allocation of Air Pollution Monitoring Network by Spatial Distribution Analysis of Ozone and Nitrogen Dioxide Concentrations in Busan (부산지역 오존 및 이산화질소 농도의 공간분포해석에 따른 대기오염측정망 배치연구)

  • Yoo, Eun-Chul;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.583-591
    • /
    • 2004
  • In this study, methodologies for the rational organization of air pollution monitoring network were examined by understanding the characteristics of temporal and spatial distribution of secondary air pollution, whose significance would increase hereafter. The data on $O_3$ and $NO_2$ concentrations during high ozone period in 1998~1999 recorded at the nine air pollution monitoring station in Busan were analysed using principal component analysis (PCA) and cumulative semivariogram. It was found that the ozone concentration was deeply associated with the daily emission characteristics or the $O_3$ precusors, and nitrogen dioxide concentration largely depends on the emission strength of regional sources. According to the spatial distribution analysis of ozone and nitrogen dioxide in Busan using cumulative semivariograms, the number of monitoring stations for the secondary air pollution can be reduced in east-west direction, but reinforced in north-south direction to explain the spacial variability. More scientific and rational relocation of air pollution monitoring network in Busan would be needed to investigate pollution status accurately and to plan and implement the pollution reduction policies effectively.

Generation of Floor Response Spectra Considering Coupling Effect of Primary and Secondary System (부구조시스템의 연계 효과를 고려한 구조물의 층응답 스펙트럼 생성)

  • Cho, Sung Gook;Gupta, Abhinav
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.179-187
    • /
    • 2020
  • Seismic qualification of equipment including piping is performed by using floor response spectra (FRS) or in-structure response spectra (ISRS) as the earthquake input at the base of the equipment. The amplitude of the FRS may be noticeably reduced when obtained from coupling analysis because of interaction between the primary structure and the equipment. This paper introduces a method using a modal synthesis approach to generate the FRS in a coupled primary-secondary system that can avoid numerical instabilities or inaccuracies. The FRS were generated by considering the dynamic interaction that can occur at the interface between the supporting structure and the equipment. This study performed a numerical example analysis using a typical nuclear structure to investigate the coupling effect when generating the FRS. The study results show that the coupling analysis dominantly reduces the FRS and yields rational results. The modal synthesis approach is very practical to implement because it requires information on only a small number of dynamic characteristics of the primary and the secondary systems such as frequencies, modal participation factors, and mode shape ordinates at the locations where the FRS needs to be generated.

Operational Characteristics of A Bidirectional SLLC Resonant Converter Using Auxiliary Switches and Inductor (보조스위치와 보조인덕터 적용 양방향 SLLC 공진컨버터 동작특성)

  • Heo, Y.C;Joo, J.S;Lee, J.C;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.405-406
    • /
    • 2016
  • A bidirectional secondary LLC resonant converter with auxiliary switches and an additional inductor is proposed to achieve the high gain characteristics of LLC resonant convertors. Auxiliary switches, an additional inductor and a resonant capacitor are connected in the high voltage secondary side of the proposed converter. The ac analysis and operating characteristics of bidirectional secondary LLC resonant converter are investigated. A 1kW prototype bidirectional secondary LLC resonant converter connected to the $400V_{DC}$ buses is designed and tested to confirm the validity and applicability of the proposed converter.

  • PDF

Hydriding Failure Analysis Based on PIE Data

  • Kim Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.378-386
    • /
    • 2003
  • Recently failures of nuclear fuel rods in Korean nuclear power plants were reported and their failure causes have been investigated by using PIE techniques. Destructive and physico-chemical examinations reveal that the clad hydriding phenomena had caused the rod failures primarily and secondarily in each case. In this study, the basic mechanisms of the primary and the secondary hydriding failures are reviewed, PIE data such as cladding inner and outer surface oxide thickness and the restructuring of the fuel pellets are analyzed, and they are compared with the predicted behaviors by a fuel performance code. In addition, post-defected fuel behaviors are reviewed and qualitatively analyzed. The results strongly support that the hydriding processes, primary and secondary, played critical roles in the respective fuel rods failures and the secondary hydriding failure can take place even in the fuel rod with low linear heat generation rate.

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance (편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석)

  • Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.