• Title/Summary/Keyword: Secondary System

Search Result 3,342, Processing Time 0.033 seconds

The Research for a Structure of Current Limiter using a Phasic Similitude of Magnetic Circuit (자기회로의 위상학적 상사성을 이용한 전류제한기 구조에 관한 연구)

  • Ji, Geun-Yang;Min, Kyung-Il;Lee, Su-Won;Jang, Bong-Hwan;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2128-2135
    • /
    • 2009
  • In this paper, current limiter using a magnetic switching which is based on magnetic flux change in the case of fault is proposed. This current limiter consists of iron-core and three parts of coils. One is the primary coil connected to the power system. Another is the secondary coil wound to the opposite direction of the primary coil's winding. The other is the secondary of the secondary coil which is a movable copper plate winding and located below the secondary coil. In the normal state, the magnetic flux produced in the primary and secondary coils flows to the opposite directions each other and becomes to be canceled out. Therefore the voltages induced between the coils are zero. In the case of a fault, at the moment of a fault occurrence recognition, the switch connected to a secondary coil is opened and the secondary of the secondary coil is pulled out to the outside of the iron-core. Then, magnetic flux becomes to flow through the iron-core. Accordingly, the voltage is induced between the both ends of the primary coil and makes the current reduced. Therefore it is possible to cut off the circuit breaker easily with the proposed current limiter. This paper analyzes the current limiting effects and the detailed results are given.

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

The Experimental Investigation of the Secondary Flow and Losses Within the Plane Turbine Cascade Passage (선형터빈 케스케이드 통로내의 2차 유동과 손실에 관한 연구)

  • 이기백;양장식;나종문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.784-795
    • /
    • 1995
  • This paper represents the results of the experiments of the three-dimensional flow and the aerodynamic loss caused by the three-dimensional flow within the plane bucket blades. To research the secondary flow and the aerodynamic loss, the large-scale plane bucket blade of lst-stage in the low pressure steam turbine is made of FRP. The detailed investigation of the secondary flow and the aerodynamic loss using 5-hole pressure probe within turbine cascade has been carried out in the low speed wind tunnel. The limiting streamlines of the suction and endwall surface have been visualized by the oil film method. The flow visualization of the secondary flow has been performed by the laser light sheet technique and image processing system. By using the method mentioned above, it is possible to observe the evolution of the pitchwise mass-averaged flow deviation angle and total pressure loss coefficient, the secondary flow, and the aerodynamic loss through the cascade.

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

Detection of similar GPCRs by using protein secondary structures

  • Ku, Ja-Hyo;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-42
    • /
    • 2008
  • G protein-coupled receptor(GPCR) family is a cell membrane protein, and plays an important role in a signaling mechanism which transmits external signals through cell membranes into cells. Now, it is estimated that there may be about 800-1000 GPCRs in a human genome. But, GPCRs each are known to have various complex control mechanisms and very unique signaling mechanisms. GPCRs are involved in maintaining homeostasis of various human systems including an endocrine system or a neural system and thus, disorders in activity control of GPCRs are thought to be the major source of cardiovascular disorders, metabolic disorders, degenerative disorders, carcinogenesis and the like. As more than 60% of currently marketed therapeutic agents target GPCRs, the GPCR field has been actively explored in the pharmaceutical industry. Structural features, and class and subfamily of GPCRs are well known by function, and accordingly, the most fundamental work in studies identifying the previous GPCRs is to classify the GPCRs with given protein sequences. Studies for classifying previously identified GPCRs more easily with mathematical models have been mainly going on. Considering that secondary sequences of proteins, namely, secondary binding structures of amino acids constituting proteins are closely related to functions, the present paper does not place the focus on primary sequences of proteins as previously practiced, but instead, proposes a method to transform primary sequences into secondary structures and compare the secondary structures, and then detect an unknown GPCR assumed to have a same function in databases of previously identified GPCRs.

  • PDF

Effect of Highly Concentrated Oxygen and Stimulus of Odors on the Performance of Secondary Tasks While Driving Using Vehicle Graphic Driving Simulator (자동차 화상시뮬레이터에서 운전 중 동시과제 수행에 고농도 산소와 향 자극이 미치는 영향)

  • Ji, Doo-Hwan;Min, Cheol-Kee;Ryu, Tae-Beum;Shin, Moon-Soo;Chung, Soon-Cheol;Kang, Jin-Kyu;Min, Byung-Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • In this study, it was observed through the ability of performing secondary tasks and baseline fetal heart rate how the supply of lavender, peppermint and highly concentrated oxygen (40%) affected distraction due to the performance of secondary tasks in the driving environment. Twelve male university students conducted secondary tasks while driving in the environments (6 in total) mixed and designed with oxygen concentration (21%, 40%) and the condition of odors (Normal, Lavender, Peppermint). The test was proceeded in order of stable state (5mins), driving (5mins), and secondary tasks (1min), and by extracting ECG data from every section by 30secs, the mean value of baseline fetal heart rate was calculated. As a result of analysis, in the ability of performing secondary tasks, a percentage of correct answers showed no difference in oxygen concentration and the condition of odors (p > 0.05). In performance completion time, a percentage of correct answers decreased showing a statistically significant difference in the condition of odors compared with the condition where odors were not provided (p < 0.05). As for baseline fetal heart rate, in the comparison between sections, while performing secondary tasks, it increased showing a significant difference compared with stable state and driving state (p < 0.05). The effect of interaction was observed in oxygen concentration and the condition of odors. When odors were not provided, baseline fetal heart rate decreased in 40% oxygen concentration compared with 21% oxygen concentration (p < 0.05), however, when peppermint was provided, it increased in 40% oxygen concentration compared with 21% oxygen concentration (p < 0.05). In conclusion, the fact that the condition of odors increased the ability of calculation, and when only the highly concentrated oxygen was provided, parasympathetic nerve system was activated, however, when highly concentrated oxygen was provided with peppermint at the same time, sympathetic nervous system (sns) was activated, which had a negative effect on the autonomic nervous system was drawn.

A Detection Scheme of a Secondary Arc Extinction Using Correlation of a Fault Voltage (고장 전압의 correlation을 이용한 2차 아크 소호 판별)

  • Jang, Won-Hyeok;Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.340_341
    • /
    • 2009
  • This paper suggests a detection scheme of a secondary arc extinction using the peak value of a fault voltage estimated by correlation algorithms. The system implemented in this paper is based on a Korean 765 kV system and the suggested proposed scheme is tested on the system. The performance of the method is analyzed by using Electro-Magnetic Transients Program (EMTP)/ATPDraw.

  • PDF

A Determination of The Voltage Control Area To KEPCO system (우리나라 계통의 전압 제어 지역 설정)

  • Baik Seung Do;Lee Byong Jun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.33-35
    • /
    • 2004
  • The secondary voltage control is the method the pilot bus controls the voltage of the voltage control area sufficiently uncoupled form its neighbours within a area to k slightly influenced by the actions carried out in the other areas. This paper presents the comparison of three methods which determines the voltage control area for the secondary voltage control in power system. Additionally, this paper selects the fitted thing of three methods determining the voltage control area, VSSA, and using it applies the procedure determining the voltage control area to KEPCO system.

  • PDF

On Power Allocation Schemes for Bi-directional Communication in a Spectrum Sharing-based Cognitive Radio System

  • Kim, Hyungjong;Wang, Hanho;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.285-297
    • /
    • 2014
  • This paper presents the results of an investigation into bi-directional communication in spectrum sharing-based cognitive radio (Bi-CR) systems. A Bi-CR system can increase the spectral efficiency significantly by sharing the spectrum and through the bi-directional use of spatial resources for two-way communication. On the other hand, the primary user experiences more interference from the secondary users in a Bi-CR system. Satisfying the interference constraint by simply reducing the transmission power results in performance degradation for secondary users. In addition, secondary users also experience self-interference from echo channels due to full duplexing. These imperfections may weaken the potential benefits of the Bi-CR system. Therefore, a new way to overcome these defects in the Bi-CR system is needed. To address this need, this paper proposes some novel power allocation schemes for the Bi-CR system. This contribution is based on two major analytic environments, i.e., noise-limited and interference-limited environments, for providing useful analysis. This paper first proposes an optimal power allocation (OPA) scheme in a noise-limited environment and then analyzes the achievable sum rates. This OPA scheme has an effect in the noise-limited environment. In addition, a power allocation scheme for the Bi-CR system in an interference-limited environment was also investigated. The numerical results showed that the proposed schemes can achieve the full duplexing gain available from the bi-directional use of spatial resources.

A Comparative Study on the Sizing Systems of the Infants and Children's Swim-suit (유유아 수영복의 치수체계 비교 연구)

  • Yi Kyong-Hwa;Jung Hae Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.1-12
    • /
    • 2005
  • This study was to suggest a feasible sizing system of infants and children's swim-suits. The basic body dimensions were selected after surveying the swimsuit manufacturers. The control dimensions and the secondary dimensions were taken from the 1997 National Anthropometric Survey data for the establishment of the sizing system. While in the current market swimsuit sizes were generally measured by the hip circumference for boys, and the bust and hip circumference for girls, the height was selected in this study as the control dimension because the height is well recognized by the customers and the KS standards specify the height to be the control dimension for infant's and children's wear. In the new sizing system of this study, the height was a control dimension, and hip was selected as a secondary dimension for boys. and bust and hip were selected as secondary dimensions for girls. Conclusively, in this study we suggest 12 sizes in case of 5cm height interval by the KS sizing system and 7 sizes in case of loom height interval by the current market sizing system, based on the height as a control dimension, for a standard swim-suit sizing system for infants and children.