• Title/Summary/Keyword: Secondary Instability

Search Result 107, Processing Time 0.028 seconds

A SIMPLE ANALYTICAL METHOD FOR NONLINEAR DENSITY WAVE TWO-PHASE INSTABILITY IN A SODIUM-HEATED AND HELICALLY COILED STEAM GENERATOR

  • Kim, Seong-O;Choi, Seok-Ki;Kang, Han-Ok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.841-848
    • /
    • 2009
  • A simple model to analyze non-linear density-wave instability in a sodium-cooled helically coiled steam generator is developed. The model is formulated with three regions with moving boundaries. The homogeneous equilibrium flow model is used for the two-phase region and the shell-side energy conservation is also considered for the heat flux variation in each region. The proposed model is applied to the analysis of two-phase instability in a JAEA (Japan Atomic Energy Agency) 50MWt No.2 steam generator. The steady state results show that the proposed model accurately predicts the six cases of operating temperatures on the primary and secondary sides. The sizes of three regions, the secondary side pressure drop according to the flow rate, and the temperature variation in the vertical direction are also predicted well. The temporal variations of the inlet flow rate according to the throttling coefficient, the boiling and superheating boundaries and the pressure drop in the two-phase and superheating regions are obtained from the unsteady analysis.

Fluid-elastic Instability Evaluation of Steam Generator Tubes

  • Cho, Young Ki;Park, Jai Hak
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • It has been reported that the plugged steam generator tube of Three Mile Island Unit 1 in America was damaged by growing flaw and then this steam generator tube destroyed the nearby steam generator tubes of normal state. On this account, stabilizer installation is necessary to prevent secondary damage of the steam generator tubes. The flow-induced vibration is one of the major causes of the fluid-elastic instability. To guarantee the structural integrity of steam generator tubes, the flow-induced vibration caused by the fluid-elastic instability is necessary to be suppressed. In this paper, the effective velocity and the critical velocity are calculated to evaluate the fluid-elastic instability. In addition, stability ratio value of the steam generator tubes is evaluated in order to propose one criterion when to determine stabilizer installation.

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Lee, Jong-Guen;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

Thermal Instability of Natural Convection in a Glass Melting Furnace (유리 용융로에서 자연대류의 열적 불안정성)

  • Lim, Kwang-Ok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

A Study on the Eigenmode Characteristics by Changing Damping Parameters of Secondary Suspension (Damper) on Railway Vehicles (철도차량 이차현가장치 댐퍼 매개변수 변화에 따른 고유모드 특성에 대한 연구)

  • Shin, Yu-Jeong;You, Won-Hee;Park, Joon-Hyuk;Hur, Hyun-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.796-804
    • /
    • 2011
  • Railway vehicles are capable of indicating several types of instability. This phenomenon, which is called hunting motion, is a self excited lateral oscillation that is caused by the running velocity of the vehicle and wheel frail interactive forces. The interactive forces act to change effectively the damping characteristics of railway vehicle systems. This paper will show the impact of instability on the transfer function behavior using damping characteristics of secondary suspension. The vehicle dynamics are modeled using a 17 degree of freedom considering linear wheel/rail contact. The paper deals with certain condition of the damper characteristics that one is about various damping coefficient and another is equipped damper direction.

Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube (CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석)

  • 박치용;유기완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

Fluidelastic Instability Analysis of the U-Tube Bundle of a Recirculating Type Steam Generator (재순환식 증기발생기 U-튜브군에 대한 유체탄성 불안정 해석)

  • 조종철;이상균;김웅식;신원기;은영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.200-214
    • /
    • 1993
  • This paper presents the results of fluidelastic instability analysis performed for the U-tube bundle of a Westinghouse model 51 steam generator, one of the recirculating types designed at an early stage, in which the principal region of external cross-flow is associated with the U-bend portion of tube. The prerequisites for this analysis are detailed informations of the secondary side flow conditions in the steam generator and the free vibration behaviours of the U-tubes. In this study, the three-dimensional two-phase flow field in the steam generator has been calculated employing the ATHOS3 steam generator two-phase flow code and the ANSYS engineering analysis code has been used to calculate the free vibration responses of specific U tubes under consideration. The assessment of the potential instability for the suspect U-tubes, which is the final analysis process of the present work, has been accomplished by combining the secondary side velocity and density distributions obtained from the ATHOS3 prediction with the relative modal displacement and natural frequency data calculated using the ANSYS code. The damping of tubes in two-phase flow has been deduced from the existing experimental data by taking into account the secondary side void fraction effect. In operation of the steam generator, the tube support conditions at the tube-to-tube support plate intersections due to either tube denting degradation or deposition of tube support plate corrosion products or ingression of dregs. Thus, various hypothetical cases regarding the tube support conditions at the tube-to-tube support plate intersections have been considered to investigate the clamped support effects on the forced vibration response of the tube. Also, the effect of anti-vibration bars support in the curved portion of tube has been examined.

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.