• Title/Summary/Keyword: Secondary Flows

Search Result 258, Processing Time 0.028 seconds

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

Geochemical Study on the Uranium Anormaly around the Shinbo Talc Mine (I) -In the Light of Hydrochemical Properties- (신보활석광산 주변에 형성된 우라늄 이상치에 관한 지화학적 연구 (I) -수리화학적 특성을 중심으로-)

  • Chung, Jae-Il;Lee, Mu-seong;Na, Choon-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this study is to elucidate the source of U anormaly formed in stream water of the drainage system around the Shinbo talc mine area based on the hydrochemical properties of water masses including surface water and groundwater. The hydrochemical properties of water masses in the Shinbo talc mine area are divide into three types; Type I : $Ca(Mg)SO_4$ type with high U content as shown in the stream water flowout from the mine, Type II : $Ca(HCO_3)_2$ type with high U content as in deep groundwater, Type III : $Ca(HCO_3)_2$, type with low U content as in the other stream water and shallow groundwater. It is necessary to emphasize that in deducing the uranium source, a distinct discrimination between type I and type II is showed in their hydrothermal properties in spite of commonly having a high uranium content, which in turn means the occurrence of a different water-rock interaction processes between both type. All evidences suggest that type II groundwater have acted as a primary media in the transport of uranium and that, as the groundwater flows through the talc mineralization zone, water composition of type II was transformed into that of type I water as the results of a secondary water rock interaction process, caused by imposition of new mineralogically controlled thermodynamic constraints. Consequently, in the viewpoint of hydrochemical exploration, the investigation of the hydrologic circulation system and the hydrogeologic properties for the aquifer of type II groundwater shall be done first of all and will provide a crucial clue on tracing the uranium mineralization zone occurred in the Shinbo talc mine area.

  • PDF

Investigation concerning Design Method of the Diffuser Expansion Ratio Commanding a Starting of the Second Throat Exhaust Diffuser for High Altitude Simulation (고도모사용 2차목 디퓨져 시동을 위한 디퓨져 팽창비 설계기법에 관한 연구)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.299-304
    • /
    • 2008
  • Starting characteristics of the axi-symmetric second throat exhaust diffuser (STED) with zero-secondary flows are numerically investigated. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with enhanced wall treatment are solved to simulate the diffusing evolutions of the nozzle plume. Minimum (optimum) starting pressure difference of 20$\sim$25% between 1-D theory and the measured data validated from previous results[5] is also applied to predict the range of an effective diffuser expansion ratio (Ad/At) in this system.

  • PDF

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

The current state and prospects of travel business development under the COVID-19 pandemic

  • Tkachenko, Tetiana;Pryhara, Olha;Zatsepina, Nataly;Bryk, Stepan;Holubets, Iryna;Havryliuk, Alla
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.664-674
    • /
    • 2021
  • The relevance of this scientific research is determined by the negative impact of the COVID-19 pandemic on the current trends and dynamics of world tourism development. This article aims to identify patterns of development of the modern tourist market, analysis of problems and prospects of development in the context of the COVID-19 pandemic. Materials and methods. General scientific methods and methods of research are used in the work: analysis, synthesis, comparison, analysis of statistical data. The analysis of the viewpoints of foreign and domestic authors on the research of the international tourist market allowed us to substantiate the actual directions of tourism development due to the influence of negative factors connected with the spread of a new coronavirus infection COVID-19. Economic-statistical, abstract-logical, and economic-mathematical methods of research were used during the process of study and data processing. Results. The analysis of the current state of the tourist market by world regions was carried out. It was found that tourism is one of the most affected sectors from COVID-19, as, by the end of 2020, the total number of tourist arrivals in the world decreased by 74% compared to the same period in 2019. The consequence of this decline was a loss of total global tourism revenues by the end of 2020, which equaled $1.3 trillion. 27% of all destinations are completely closed to international tourism. At the end of 2020, the economy of international tourism has shrunk by about 80%. In 2020 the world traveled 98 million fewer people (-83%) relative to the same period last year. Tourism was hit hardest by the pandemic in the Asia-Pacific region, where travel restrictions are as strict as possible. International arrivals in this region fell by 84% (300 million). The Middle East and Africa recorded declines of 75 and 70 percent. Despite a small and short-lived recovery in the summer of 2020, Europe lost 71% of the tourist flow, with the European continent recording the largest drop in absolute terms compared with 2019, 500 million. In North and South America, foreign arrivals declined. It is revealed that a significant decrease in tourist flows leads to a massive loss of jobs, a sharp decline in foreign exchange earnings and taxes, which limits the ability of states to support the tourism industry. Three possible scenarios of exit of the tourist industry from the crisis, reflecting the most probable changes of monthly tourist flows, are considered. The characteristics of respondents from Ukraine, Germany, and the USA and their attitude to travel depending on gender, age, education level, professional status, and monthly income are presented. About 57% of respondents from Ukraine, Poland, and the United States were planning a tourist trip in 2021. Note that people with higher or secondary education were more willing to plan such a trip. The results of the empirical study confirm that interest in domestic tourism has increased significantly in 2021. The regression model of dependence of the number of domestic tourist trips on the example of Ukraine with time tendency (t) and seasonal variations (Turˆt = 7288,498 - 20,58t - 410,88∑5) it forecast for 2020, which allows stabilizing the process of tourist trips after the pandemic to use this model to forecast for any country. Discussion. We should emphasize the seriousness of the COVID-19 pandemic and the fact that many experts and scientists believe in the long-term recovery of the tourism industry. In our opinion, the governments of the countries need to refocus on domestic tourism and deal with infrastructure development, search for new niches, formats, formation of new package deals in new - domestic - segment (new products' development (tourist routes, exhibitions, sightseeing programs, special rehabilitation programs after COVID) -19 in sanatoriums, etc.); creation of individual offers for different target audiences). Conclusions. Thus, the identified trends are associated with a decrease in the number of tourist flows, the negative impact of the pandemic on employment and income from tourism activities. International tourism needs two to four years before it returns to the level of 2019.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Disaster Prevention Planning through Analysis of Debris Flow Vulnerability Based on Mountain Basin Features (산지유역 기반의 토석류 취약성 분석을 통한 재해방지 계획수립 연구)

  • Kim, Man-Il;Lee, Moon-Se;Hong, Kwan-Pyo
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.393-403
    • /
    • 2017
  • Mountain disasters in Korea have caused massive social and economic damage. During the period 2005-2014 there has been an annual average of 7 deaths and disaster recovery costs of 79.8 billion won in the country's 4393 ha of mountainous areas. The primary mountain disasters are landslides on mountain slopes, and secondary debris flows can spread along mountain streams, damaging facilities and settlements in lower areas. Typhoons and local rainfall can cause such disasters, while anthropogenic factors include development that damages the mountainous terrain. The study area was divided into three basins. For each basin, a debris flow vulnerability assessment method was proposed considering FLO-2D analysis results and the local topography, geology, and forestation. To establish an in situ investigation, analysis, and evaluation plan for potential mountain disasters, we selected mountain basins that are potentially vulnerable to mountain disasters through analysis of their mountain slopes and streams. This work suggests the establishment of a comprehensive plan for disaster prevention based on a mountain basin feature.

PERIOD CHANCE OF THE CONTACT BINARY AH Tauri (접촉쌍성 AH Tauri의 공전주기 변화)

  • Lee, Dong-Joo;Lee, Chung-Uk;Lee, Jae-Woo;Kim, Seung-Lee;Oh, Kyu-Dong;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.283-294
    • /
    • 2004
  • New BV RI photometric observations of the contact binary AH Tau were performed with the 61 cm reflector and a 2K CCD camera at the Sobaeksan Optical Astronomy Observatory during seven nights from September to December, 2001. A total of 144 times of minima observed up to date, including three times of minima obtained from our observation, were analyzed. It is found that the orbital period of AH Tau has varied in a cyclic way superposed on a secular period decrease. The rate of the secular period decrease is calculated to be $1^s$ .04 per century, implying that a mass of about $3.8{\times}10^{-8}M{\odot}/yr$ from the more massive primary flows into the secondary if a conservative mass transfer is assumed. Assuming that the sinusoidal period variation is produced by a light-time effect due to an unseen third body, the resultant semi-amplitude, period, and eccentricity for the deduced light-time orbit are obtained as 35.4 years, 0.014 day and 0.52, respectively. The mass of the third-body is calculated as a tout $0.24M{\odot}$ when the third body is assumed to be coplanar with AH Tau system.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

EFFECT OF RESIN MATRIX ON DEGREE OF CONVERSION AND FRACTURE TOUGHNESS OF DENIAL COMPOSITES (기질레진의 조성에 따른 복합레진의 물리적 성질에 관한 연구)

  • Lee, Yun-Shin;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Current composites are made with dimethacrylate monomers and silane-treated silica microfillers, either alone or with silane treated glass fillers The main reasons for clinical failure of dental composites are secondary caries, wear and fracture. Most of practitioner want to get a composite which is more tougher under occlusal stress, less polymerization contraction, and better handling properties in application clinically. The aim of this study was to investigate the influence of resin matrix with various flows on the physical proper-ties such as fracture toughness and degree of conversion of the experimental resins. It was hypothesized that flexible or tough resin composites can be designed by judicious choice of monomer composition Various flow resin matrices containing Bis-GMA, UDMA, and TEG-DMA were made by altering the pro-portion of the monomers. After the unfilled resins were light-cured for different light intensity, the fracture toughness(K$_{1c}$) was measured according to ASTM standard using the single edge notched geometry, and degree of conversion(DC) was measured by FTIR. And experimental composites were formulated with variations in the proportion of silanated quartz and strontium glass fillers as 60, 75, and 77wt%. Also, the physical properties of composites with various filer contents were evaluated as same manner. All resulting data were compared by ANOVA/Tukeys test at 0.05 level. The results were as follows; 1. The degree of conversion of high flow resin containing less Bis-GMA was higher than that of low flow unfilled resin 2. While the degree of conversion of unfilled resin was increased according to light intensity for polymerization, there was no significant increase with moderate and high light intensity. Also, the fracture toughness was not increased by high light intensity. 3. The fracture toughness was high in the low flow unfilled resin containing higher contents of Bis-GMA. 4. There was a significant increase for fracture toughness and a tendency for degree of conversion to be reduced when the content of fillers was increased. 5. In the experimental composites, the flow of resin matrix did not affected on the fracture toughness, even, which was decreased as increase of viscosity. These results showed that the physical properties of a dental composite could be attributed to the flow of resin matrix with relative content of monomers. Specific combination of resin monomers should be designed to fulfil the needs of specific indication for use.