• 제목/요약/키워드: Second order moment

검색결과 267건 처리시간 0.025초

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Moment-curvature relationships to estimate deflections and second-order moments in wind-loaded RC chimneys and towers

  • Menon, Devdas
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.255-269
    • /
    • 1998
  • Second-order moments of considerable magnitude arise in tall and slender RC chimneys and towers subject to along-wind loading, on account of eccentricities in the distributed self-weight of the tower in the deflected profile. An accurate solution to this problem of geometric nonlinearity is rendered difficult by the uncertainties in estimating the flexural rigidity of the tower, due to variable cracking of concrete and the 'tension stiffening' effect. This paper presents a rigorous procedure for estimating deflections and second-order moments in wind-loaded RC tubular towers. The procedure is essentially based on a generalised formulation of moment-curvature relationships for RC tubular towers, derived from the experimental and theoretical studies reported by Schlaich et al. 1979 and Menon 1994 respectively. The paper also demonstrates the application of the proposed procedure, and highlights those conditions wherein second-order moments become too significant to be overlooked in design.

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

Direct Numerical Simulation and Second-Order Conditional Moment Closure Modelling of a Turbulent Hydrocarbon Flame (난류 탄화수소화염의 직접수치해석 및 이차 조건모멘트닫힘 모델링)

  • Kim, Seung-Hyun;Huh, Kang Y.;Bilger, Robert W.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.35-41
    • /
    • 2001
  • A second-order conditional moment closure(CMC) model is applied to the prediction of local extinction in a turbulent hydrocarbon diffusion flame and compared with direct numerical simulation(DNS) results for the flame. Combustion of a hydrocarbon fuel is described by a simple two-step mechanism. A second-order correction for conditional mean reaction rate terms is made by the assumed pdf method. The results show that the second-order closure is necessary for accurate prediction of intermediate species, while first-order CMC gives good predictions for fuel, oxidant, product and temperature. Conditional variances and covariances are well predicted during an extinction process while they are overpredicted during a reignition process.

  • PDF

Nonlinear Fluid Forces on Hinged Wavemakers (힌지형 조파기에 작용하는 비선형 파력)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제2권4호
    • /
    • pp.208-222
    • /
    • 1990
  • The nonlinear hydrodynamic pressure force and moment on hinged wavemakers of variable-draft are presented. A closed-form solution (correct to second-order) for the nonlinear wavemaker boundary value problem has been obtained by employing the Stokes perturbation expansion scheme. The physical significance of the second-order contributions to the hydrodynamic pressure moment are examined in detail. Design curves are presented which demonstrate both the magnitude of the second-order nonlinearities and the effects of the variable-draft hinge height. The second-order contributions to the total hydrodynamic force and moment consist of a time-dependent and a steady part. The sum of the first and second-order pressure force and moment show a significant increase over those predicted by linear wavemaker theory. The second-order effects are shown to vary with both relative water depth and wave amplitude. The second-order dynamic effects are relatively more important for hinged wavemakers with shallower drafts.

  • PDF

Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure (타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성)

  • Han, Seong-Ho;Seo, Jeong-Sik;Shin, Jung-Kun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제31권1호
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code

  • Habibi, Alireza;Izadpanah, Mehdi;Rohani, Sina
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.23-31
    • /
    • 2020
  • Geometric nonlinearity can significantly affect load-carrying capacity of slender columns. Dependence of structural stability on columns necessitates the consideration of second-order effects in the design process of columns, appropriately. On the whole, the design codes present a simplified procedure for second order analysis of slender columns. In this approximate method, the end moments of columns resulted from linear analysis (first-order) are multiplied by the recommended moment amplification factors of codes to achieve magnified moments of the second-order analysis. In the other approach, the equilibrium equations are directly solved for the deformed configuration of structure, so the resulting moments and deflections contain the influence of slenderness and increase more rapidly than do loads. The aim of this study is to evaluate the accuracy of moment amplification factors of Iranian national building code whose provisions are similar to the ACI requirement. Herein, finite element method is used to achieve magnified end moments of reinforced concrete moment resisting frames, and the outcomes are compared with the moments acquired based on the proposed approximate method by Iranian national building code. The results show that the approximate method of Iranian code for calculating magnified moments has significant errors for both unbraced and braced columns.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

Study on the Second Moment Turbulence Model in a Square Sectioned $180^{\circ}$ Bend (정사각단면을 갖는 $180^{\circ}$ 곡관내의 2차 모멘트 난류모형에 관한 연구)

  • 김명호;염성현;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권5호
    • /
    • pp.1203-1217
    • /
    • 1994
  • In the present study, in order to analyze a turbulent flow in a square sectiond 180.deg. bend, Kim's low Reynolds number second moment turbulence closure is adopted. In this model, turbulence model constants in the wall region are modified as functions of turbulent Reynolds number by use of near wall turbulent universal properties based on Laufer's experimental results of Reynolds stress distriburions. Algebraic stress model and Reynolds stress equation model are used to verify the low Reynolds number second moment closure. The application of the present low Reynolds number algebraic stress model to the prediction of a square sectioned 180.deg. bend flow gives improved velocities and Reynolds stresses profiles compared with those obtained by using the van Driest mixing length model and present low Reynolds number Reynolds stress equation model.

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF