• Title/Summary/Keyword: Second main theorem

Search Result 37, Processing Time 0.027 seconds

ON THE SYNGE'S THEOREM FOR COMPLEX FINSLER MANIFOLDS

  • Won, Dae-Yeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.137-145
    • /
    • 2004
  • In [13], we developed a theory of complex Finsler manifolds to investigate the global geometry of complex Finsler manifolds. There we proved a version of Bonnet-Myers' theorem for complex Finsler manifolds with a certain condition on the Finsler metric which is a generalization of the Kahler condition for the Hermitian metric. In this paper, we show that if the holomorphic sectional curvature of M is ${\geq}\;c^2\;>\;0$, then M is simply connected. This is a generalization of the Synge's theorem in the Riemannian geometry and the Tsukamoto's theorem for Kahler manifolds. The main point of the proof lies in how we can circumvent the convex neighborhood theorem in the Riemannian geometry. A second variation formula of arc length for complex Finsler manifolds is also derived.

GENERALIZATIONS OF GAUSS'S SECOND SUMMATION THEOREM AND BAILEY'S FORMULA FOR THE SERIES 2F1(1/2)

  • Rathie, Arjun K.;Kim, Yong-Sup;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2006
  • We aim mainly at presenting two generalizations of the well-known Gauss's second summation theorem and Bailey's formula for the series $_2F_1(1/2)$. An interesting transformation formula for $_pF_q$ is obtained by combining our two main results. Relevant connections of some special cases of our main results with those given here or elsewhere are also pointed out.

ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION

  • Choi, Junesang;Rathie, Arjun K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The main objective of this paper is to obtain a formula containing eleven interesting results for the reducibility of Kamp$\acute{e}$ de F$\acute{e}$riet function. The results are derived with the help of two general results for the series $_2F_1(2)$ very recently presented by Kim et al. Well known Kummer's second theorem and its contiguous results proved earlier by Rathie and Nagar, and Kim et al. follow special cases of our main findings.

ON A HYPERGEOMETRIC SUMMATION THEOREM DUE TO QURESHI ET AL.

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.527-534
    • /
    • 2013
  • We first aim at proving an interesting easily derivable summation formula. Then it is easily seen that this formula immediately yields a hypergeometric summation theorem recently added to the literature by Qureshi et al. Moreover we apply the main formulas to present some interesting summation formulas, whose special cases are also seen to yield the earlier known results.

A SUMMATION FORMULA FOR THE SERIES 3F2 DUE TO FOX AND ITS GENERALIZATIONS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fox [2] presented an interesting identity for $_pF_q$ which is expressed in terms of a finite summation of $_pF_q$'s whose involved numerator and denominator parameters are different from those in the starting one. Moreover Fox [2] found a very interesting and general summation formula for $_3F_2(1/2)$ as a special case of his above-mentioned general identity with the help of Kummer's second summation theorem for $_2F_1(1/2)$. Here, in this paper, we show how two general summation formulas for $$_3F_2\[\array{\hspace{110}{\alpha},{\beta},{\gamma};\\{\alpha}-m,\;\frac{1}{2}({\beta}+{\gamma}+i+1);}\;{\frac{1}{2}}\]$$, m being a nonnegative integer and i any integer, can be easily established by suitably specializing the above-mentioned Fox's general identity with, here, the aid of generalizations of Kummer's second summation theorem for $_2F_1(1/2)$ obtained recently by Rakha and Rathie [7]. Several known results are also seen to be certain special cases of our main identities.

MULTIPLE SOLUTIONS FOR CERTAIN NONLINEAR SECOND-ORDER SYSTEMS

  • Tian, Yu;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.353-361
    • /
    • 2007
  • In this paper, we prove the existence of multiple solutions for Neumann and periodic problems. Our main tools are recent general multiplicity theorems proposed by B. Ricceri.

EQUALITY IN DEGREES OF COMPACTNESS: SCHAUDER'S THEOREM AND s-NUMBERS

  • Asuman Guven Aksoy;Daniel Akech Thiong
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1127-1139
    • /
    • 2023
  • We investigate an extension of Schauder's theorem by studying the relationship between various s-numbers of an operator T and its adjoint T*. We have three main results. First, we present a new proof that the approximation number of T and T* are equal for compact operators. Second, for non-compact, bounded linear operators from X to Y, we obtain a relationship between certain s-numbers of T and T* under natural conditions on X and Y . Lastly, for non-compact operators that are compact with respect to certain approximation schemes, we prove results for comparing the degree of compactness of T with that of its adjoint T*.

EXISTENCE OF THREE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SINGULAR DIFFERENTIAL SYSTEMS WITH LAPLACIAN OPERATORS

  • Yang, Xiaohui;Liu, Yuji
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.187-220
    • /
    • 2016
  • This paper is concerned with a kind of non-homogeneous boundary value problems for singular second order differential systems with Laplacian operators. Using multiple fixed point theorems, sufficient conditions to guarantee the existence of at least three solutions of this kind of boundary value problems are established. An example is presented to illustrate the main results.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.