• Title/Summary/Keyword: Second Harmonic Signal

Search Result 88, Processing Time 0.025 seconds

Parallel Feedback Oscillator for Strong Harmonics Suppression and Frequency Doubler (고조파 억압을 위한 병렬 궤환형 발진기와 주파수 체배기)

  • Lee, Kun-Joon;Ko, Jung-Pil;Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.122-128
    • /
    • 2005
  • In this paper, a low noise parallel feedback oscillator for harmonic suppression and a frequency doubler are designed and implemented. As the fundamental signal of the oscillator for frequency doubling is extracted between the dielectric resonator (DR) filter and the gate device of the active device, the undesired harmonics at the output of the oscillator is remarkably suppressed. The fundamental signal of the oscillator for frequency doubling directly feeds to the frequency doubler without an additional band pass filter for harmonic suppression. The second harmonic suppression of -47.7 dBc at the oscillator output is achieved, while the fundamental suppression of -37.5 dBc at the doubler output is obtained. The phase noise characteristics are -80.3 dBc/Hz and -93.5 dBc/Hz at the offset frequency of 10 KHz and 100 KHz from the carrier, respectively.

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

A CMOS LC VCO with Differential Second Harmonic Output (차동 이차 고조파 출력을 갖는 CMOS LC 전압조정발진기)

  • Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.60-68
    • /
    • 2007
  • A technique is presented to extract differential second harmonic output from common source nodes of a cross-coupled P-& N-FET oscillator. Provided the impedances at the common source nodes are optimized and the fundamental swing at the VCO core stays in a proper mode, it is found that the amplitude and phase errors can be kept within $0{\sim}1.6dB$ and $+2.2^{\circ}{\sim}-5.6^{\circ}$, respectively, over all process/temperature/voltage corners. Moreover, an impedance-tuning circuit is proposed to compensate any unexpectedly high errors on the differential signal output. A Prototype 5-GHz VCO with a 2.5-Hz LC resonator is implemented in $0.18-{\mu}m$ CMOS. The error signal between the differential outputs has been measured to be as low as -70 dBm with the aid of the tuning circuit. It implies the push-push outputs are satisfactorily differential with the amplitude and phase errors well less than 0.34 dB and $1^{\circ}$, respectively.

Construction of laser induced grating spectrometer and measurement of thermal grating in $C_3H_8$ flame (레이저 유도 격자 분광장치 제작 및 $C_3H_8$화염에서 열 격자 측정)

  • 박철웅;한재원;이중재;이영우;고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.446-451
    • /
    • 2001
  • We made a laser induced grating spectrometer(LIGS) and measured the thermal grating signal generated in a $C_3$ $H_{8}$ flame. The thermal grating was formed in the C7Ha flame with two second-harmonic Nd:YAG pulse laser beams, and an LIGS signal was generated by Bragg scattering of a probe laser beam A $r^+.laser(488 nm). We found the modulation period of the signal depends linearly on the spacing of the grating set in the flame. We determined flame temperature by fitting the modulated signal and soot concentration with signal strength. Using this technique, we also obtained temperature profile and soot-particle distribution in a $C_3$ $H_{8}$ flame .e .

  • PDF

Second harmonic generation of pulsed corona - poled nonlinear optical polymer films (펄스 corona 배향된 비선형광학 고분자박막의 제2 고조파발생)

  • Kim, Jun-Soo;Lee, Jong-Ha;Lee, Hwang-Un;Kim, Sang-Youl;Won, Young-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • The molecular orientational dynamics of the nonlinear optical(NLO) side-chain polymer N-(4-nitrophenyl)-(L)-prolinol-poly (pphenylene terephthalates) have been studied using nonlinear optical responses as measured by second harmonic generation (SHG). A new pulsed corona poling is used to orient the NLO chromophores and the polymer segments into the noncentrosymmetric structure required to obtain the SHG signal. By corona poling of negative high voltage pulses with variable repetition rates (between 0.5 and 10 ㎑) at temperature between 25$^{\circ}C$ and 80$^{\circ}C$, well below and about the glass transition temperature 70$^{\circ}C$, the side-chain chromophores and the polymer chain contour rearrange themselves and create the domain structure observed by atomic force microscopy(AFM). The pulsed corona voltage enhances the orientational ordering of the NLO chromophores and also significantly influences the growth of SHG signal and the improved relaxation behavior after the poling field is removed, reducing the visible damage to the polymer film dramatically. This new pulsed corona poling experiment gave direct in situ evidence that the NLO chromophore and the polymer backbone undergo anisotropic rearrangement during the poling process.

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT (MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환)

  • Song, Seungbeen;Park, Eunji;Park, Jong Sun;Oh, Yejin;Jeong, Hoon;Kim, Ji Won
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.

Effect of Window Function for Measurement of Ultrasonic Nonlinear Parameter Using Fast Fourier Transform of Tone-Burst Signal (톤버스트 신호의 퓨리에 변환을 이용한 초음파 비선형 파라미터 측정에서 창함수가 미치는 영향)

  • Lee, Kyoung-Jun;Kim, Jongbeom;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • In ultrasonic nonlinear parameter measurement using the fast Fourier transform(FFT) of tone-burst signals, the side lobe and leakage on spectrum because of finite time and non-periodicity of signals makes it difficult to measure the harmonic magnitudes accurately. The window function made it possible to resolve this problem. In this study, the effect of the Hanning and Turkey window functions on the experimental measurement of nonlinear parameters was analyzed. In addition, the effect of changes in tone burst signal number with changes in the window function on the experimental measurement was analyzed. The result for both window functions were similar and showed that they enabled reliable nonlinear parameter measurement. However, in order to restore original signal amplitude, the amplitude compensation coefficient should be considered for each window function. On a separate note, the larger number of tone bursts was advantageous for stable nonlinear parameter measurement, but this effect was more advantageous in the case of the Hanning window than the Tukey window.

The Design of Predistortion Linearizer with Polar Function Generator for Cellular Band Using Even Order Harmonic Signals (2차 고조파 신호를 이용한 극 함수 발생기를 갖는 셀룰라 밴드용 전치 왜곡 선형화기 설계)

  • Kim, Ell-Kou;Jeon, Ki-Kyoung;Kim, Young;Kwon, Sang-Keun;Yoon, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1050-1057
    • /
    • 2006
  • This paper proposes a new predistortion linearizer with amplitude modulator and PFG(Polar Function Generator) using second order harmonic signals. This linearizer consists of PFG that combine with in-phase and quadrature-phase of second harmonic signals and amplitude modulator in main path. The predistorted third order intermodulation distortion(IMD3) signals that are generated by amplitude modulator with fundamental and PFG signals, improve a amplifier nonlinear characteristics. The proposed linearizer and amplifier have been manufactured and tested to operate in cellular base-station transmitting band$(869\sim894MHz)$. The test results show that IMD3 can be removed by more than 22.5 dB in case of CW 2-tone signals ${\Delta}f=1$ MHz, and the adjacent channel power ratio(ACPR) also can be improved by more than 8.4 dB for CDMA IS-95 1FA signals.

Design and Fabrication of the MMIC frequency doubler for 29 ㎓ local Oscillators

  • Kim, Sung-Chan;Kim, Jin-Sung;Kim, Byeong-Ok;Shin, Dong-Hoon;Rhee, Jin-Koo;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1062-1065
    • /
    • 2002
  • We demonstrate the MMIC(monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 ㎓ local oscillator signals from 14.5 ㎓ input signals. These devices were designed and fabricated by using the MMIC integration process of 0.1 $\mu\textrm{m}$ gate-length PHEMTs (pseudomorphic high electron mobility transistors). The measurements showed S$\_$11/ of -9.2 dB at 14.5 ㎓, S/sub22/ of -18.6 dB at 29 ㎓ and a minimum conversion loss of 18.2 dB at 14.5 ㎓ with an input power of 6 dBm. The fundamental signal of 14.5㎓ was suppressed below 15.2 dBc compared with the second harmonic signal at the output port, and the isolation characteristics of the fundamental signal between the input and the output port were maintained above 30 dB in the frequency range of 10.5 ㎓ to 18.5 ㎓.

  • PDF

A Study on the Implementation of the 2-Dimension Magnetic Fluxgate Sensor (2차원 Magnetic Fluxgate센서의 구현에 관한 연구)

  • Park, Yong-Woo;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2002
  • We have presented a 2-dimensional fluxgate sensor with ferrite core, excitation, and pick-up coil. This fluxgate sensor system consists of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through the excitation coil of 80 turns. The second harmonic output of pick-up coil(x and y axis: 100 turns) is measured by FFT spectrum analyzer. This result is compared with output of PSD(phase sensitive detector) unit for detecting the second harmonic component. The measured maximum sensitivity is about 1580 V/T at driving frequency of 1.5 kHz and excitation current of 2 App. The nonlinearity of this system is measured about 2.3%(PSD) and about 1%(second harmonics of the pick-up). The angle error of the system is ${\pm}2$ %/FS.