• 제목/요약/키워드: Secant Method

검색결과 113건 처리시간 0.023초

복합 호장법을 이용한 공간 트러스의 비선형 해석 (Nonlinear Analysis of Space Trusses Using the Combined Arc-Length Method)

  • 석창목;권영환
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.361-369
    • /
    • 2001
  • 이 연구는 공간 트러스의 비선형 해석을 위한 해석기법의 수치해석적 효율성에 관한 것으로써, 좌굴 이후의 거동 파악이 가능한 복합 호장법을 제안하였다. 복합 호장범은 현 강성변수를 제어변수로 사용하여, 안정구간에서는 선취법이 첨가된 Secant-Newton법을 사용하여, 불안정구간에서는 가속법이 첨가된 호장법을 사용하는 방법이다. 해석기법의 효율성을 비교하기 위하여 제시된 수지예제에 대한 해의 정확성, 수렴성, 계산시간을 기존의 호장법과 비교하였다. 공간 트러스의 기하학적 비선형 해석에 있어서는 이 연구에서 제안된 복합 호장법이 기존의 호장법보다 수치 해석적 효율성이 뛰어난 것을 알 수 있었다.

  • PDF

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출 (Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.200-208
    • /
    • 2003
  • 본 연구에서는 효율적인 학습규칙의 신경망 기반 독립성분분석기법을 이용한 영상신호의 분리와 특징추출을 제안하였다. 제안된 학습규칙은 할선법과 모멘트를 이용한 조합형 고정점 학습알고리즘이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $512\times512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상의 분리에 적용한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 $256\times256$ 픽셀의 10개 지문상과 $480\times225$ 픽셀의 지폐영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘보다도 빠른 특징추출 속도가 있음을 확인하였다. 한편 추출된 $16\times16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.

축대칭 발사체의 감쇠계수 계산을 위한 정상 해법 (A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles)

  • 박수형;권장혁;유영훈
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.1-8
    • /
    • 2006
  • 축대칭 발사체의 동적 감쇠계수를 계산하기 위한 정상 예측 방법을 제안한다. 관성좌표계에서 영스핀 코닝 운동을 사용한 정상 해법을 적용하기 위해서는 점성유동 해석이 필수적으로 이루어져야 한다. 제안된 방법을 회전발사체에 적용하여 피칭모멘트와 피치감쇠 모멘트계수를 계산하였다. 결과는 포물형 Navier-Stokes 예측 결과, 실험결과, 비정상 예측 결과와 잘 일치함을 확인하였다. 또한, secant-ogive-cylinder 계열 발사체에 대한 정적 및 동적 계수의 축방향 생성과정을 살펴봄으로써 후방동체의 형상으로 인한 유동 변화가 동적 안정성에 미치는 영향을 고찰하였다.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

차량용 블로우 모터 케이스 2축 굽힘 공정의 치수 정밀도 향상에 관한 연구 (A Study on Improvement of Dimensional Accuracy in 2-axis Bending for Automotive Blow Motor Case)

  • 권일근;김국용;박준우
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.419-427
    • /
    • 2018
  • In case high strength steels are applied for press-formed automotive parts, it is very difficult to secure forming accuracy due to large springback compared to moderate strength steels. In this study, a repetitive step-wise forming analyses based on secant method was proposed as the die design method for mandrel(bending tool) for the 2-axis bending equipments. A bending die with circular mandrel was designed for the DP780 blow motor case of which diameter and thickness are 70.8mm and 2.0mm respectively. Forming tests were performed to verify the validity of established die design and the results were compared with that of conventional HGI(Hot galvanized iron steel) blow motor case. For additional improvement in forming accuracy, an elliptical mandrel was proposed and its validity was verified using forming analyses based on secant method.

아르스 마그나와 프린키피아에 나오는 수치해석적 기법

  • 이무현
    • 한국수학사학회지
    • /
    • 제15권3호
    • /
    • pp.25-34
    • /
    • 2002
  • This paper explains methods of numerical analysis which appear on Cardano's Ars Magna and Newton's Principia. Cardano's method is secant method, but its actual al]plication is severely limited by technical difficulties. Newton's method is what nowadays called Newton-Raphson's method. But mysteriously, Newton's explanation had been forgotten for two hundred years, until Adams rediscovered it. Newton had even explained finding the root using the second degree Taylor's polynomial, which shows Newton's greatness.

  • PDF

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.