• 제목/요약/키워드: Seawater heat source

검색결과 37건 처리시간 0.021초

해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험 (Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

제주지역 연구소 건물의 해수열원 냉난방시스템 적용 및 평가 (The Application and Evaluation of Heating and Cooling System by Seawater Heat Source for Research Center Building in Jeju)

  • 박진영;김삼열;장기창
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.26-31
    • /
    • 2013
  • Use of heat from seawater could be different from the weather conditions of a coastal city and seawater temperatures near the city. It will be a good option to use surface layer water with Heat Pump system for using seawater cooling/heating in Jeju. The study investigates the proper depth for seawater heat gain of Jeju area in Korea. Sampling points are 0, 10, 20, 30m from the surface of the Sea. Seawater temperature does not change significantly according to the depth in winter, while the temperature is quite different according to the depth in summer. In this study, it is analyzed to compare existing system and seawater heat source system for target buildings on Jeju. And this systems are calculated a initial cost.

해수 냉방시스템의 빙상경기장 적용 방안 및 LCC 분석 (Application and Life Cycle Cost Analysis for Ice-rink using Seawater Heat Source Cooling System)

  • 박진영;김삼열;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.50-55
    • /
    • 2013
  • On a plan for the Winter Olympics 2018, Korean government is in the process of the world's first use of ocean energy for the Olympic ice-rink. This technology will be applied to a seaside town and have possibility of an export industry. In this study, we researched facilities and system for P ice-rink that acts as a cultural center as well as a physical plant in Busan and provided the way that apply by seawater heat source. Also, existing system and seawater heat source system of P ice-rink was analyzed by the most commonly used life cycle cost analysis among economics methods. Such economics data for ice-rink using seawater will be utilized by a basic information.

중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성 (Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year)

  • 윤정인;손창효;이정목;강인호
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

해수열원 스크류 히트펌프의 연간 난방운전 성능 모사 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;이영수;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.88-95
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

해수열원 스크류 히트펌프의 연간 난방운전 성능 시뮬레이션 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;강병찬;라호상;김현주
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.488-493
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

  • PDF

해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사 (Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구 (Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System)

  • 김삼열;박진영;박재홍
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

Design and Analysis of Heat Exchanger Using Sea Water Heat Source for Cooling

  • Kim, MyungRae;Lee, JuHee;Yoon, JaeOck
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.25-34
    • /
    • 2016
  • Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.

해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석 (Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation)

  • 류종혁;정현석;정석권
    • 수산해양기술연구
    • /
    • 제60권2호
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.