• Title/Summary/Keyword: Seawater heat

Search Result 155, Processing Time 0.026 seconds

Empirical Orthogonal Function Analysis of Seawater Temperature in the Southeastern Hwanghae (東南黃海에서 海水溫度의 EOF 分析)

  • 이흥재;방인권
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.193-202
    • /
    • 1986
  • Spatio-temporal variabilities of seawater temperature at 0 and 30m in the southeastern Hwanghae were studied by variance and empirical orthogonal function(EOF) analysis of long records of temperature between 1967 and 1982. The spatial distribution of monthly mean sea surface temperature has a pattern similar to the long-term annual mean which decreases from south to north. On the contrary, the total variance computed from the annual mean of sea surface temperature(SST) increases from south to north. The variance of SST is found to be two times greater than that at 30m in the study area except coastal area south of Kyunggi Bay. The important variance of temperature seem s to be closely associated with the seasonal change of temperature because the first and second modes of EOF having a seasonal cycle explain 97.6% and 85.2% of variances at 0 and 30m, respectively. There is a large difference in temperature between the northern and southern parts of the study area during winter, while the difference becomes very small during summer. This might reflect that in summer the heat gain of sea surface from the incoming radiation is much more important than the heat loss or the oceanic heat advection. In summer coastal waters south of the Kyunggi Bay and around Mokpo are observed to be colder than offshore waters due to tidal mixing.

  • PDF

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

The Effect of Annealing Heat Treatment Affecting Hardness and Corrosion Resistance of ALDC 12 Al Alloy (ALDC 12종의 경도와 내식성에 미치는 어닐링 열처리의 영향)

  • Cho, Hwang-Rae;Lee, Myeong-Hoon;Lee, Seung-Yeol;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.95-96
    • /
    • 2006
  • ALDC 12 Al alloy is often corroded with some forms such as pitting corrosion, intergranular corrosion, and galvanic corrosion etc., in case of severe corrosion environment like seawater Annealing heat treatment was performed to improve the corrosion resistance of ALDC 12. Hardness was decreased with increasing of annealing temperature, however its corrosion resistance was clearly improved with increasing of annealing temperature.

  • PDF

Study on the Stress Corrosion Cracking Behaviour of Piping for Industrial Water (공업용수배관의 응역부식균열 거동에 관한 연구)

  • Im, U-Jo;Lee, Jin-Pyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.194-201
    • /
    • 1997
  • Recently with the rapid development in the industries such as an iron mill and chemical plants, these are enlarged by the use of the piping. This piping was encountered the stress corrosion cracking(SCC) because of stress by water pressure and residual stress of welding etc. under industrial water. In this paper, the behaviour of stress corrosion cracking on the weld zone of steel pipe piping water(SPPW) were investigated according to pre-heat before welding in natural seawater(specific resistance : 25$\Omega$-cm). The main results obtained are as follows :1) The stress corrosion cracking for SPPW and SB 41 is most ready to propagate in heat affected zone of weldment. 2) The SCC sensitivity of SPPW on weldment is more susceptible than that of SB 41. 3) The stress corrosion cracking growth of heat affected zone is delayed by the preheat and dry of base metal and electrode before welding.

  • PDF

The Effect of Feed Temperature On Permeate Flux During Membrane Separation (온도가 막분리 투과성능에 미치는 영향)

  • Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Seung Won;Ji, Ho;Jung, Hyeon Ji;Won, Hye Jung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The feed temperature has an effect on the performance during desalination of seawater by membrane separation. When the permeate flux intends to increase using the waste heat, it is necessary to analyze the effect of feed temperature precisely on the membrane performance. The experiments were carried out to investigate the performance of membranes by varying the seawater temperature from $10^{\circ}C$ to $60^{\circ}C$. The increase of permeate flux with increase of feed temperature was interpreted as the change of water viscosity and the membrane itself. While the increase of permeate flux could be predicted by the viscosity change in case of nanoflitration membrane, there exists 30% difference between the experiment data and the prediction by the viscosity change in case of reverse osmosis (RO) membrane, which seems to be due to 8% decrease of the pore size in 60caused by the contraction of membrane with the increase of temperature. Therefore, the desalination of seawater should be carried out within the range that the elevation of temperature does not cause the alteration of membrane itself even for the purpose of increasing the permeate flux.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

Small Nuclear Units and Distributed Resource interconnection(2) (Small Nuclear Units에 의한 분산전원 및 계통연계(2))

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.420-422
    • /
    • 2005
  • This paper introduces a new paradigm for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation.

  • PDF

Development of the Fresh Water Generator

  • Park, Jun-Seop
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.546-552
    • /
    • 1999
  • In order to obtain the highly effective thermal energy from jacket cooling water of propulsion diesel engines. a development of the Fresh Water Generator (FWG) with a capacity of 30 ton/day was implemented. Newly developed experimental devices and data acquisition system were used to evaluate the performance of the FWG. In this study experiments were performed for various driving pressures by varying the mass flowrate of cooling seawater with or without a heat source instead of jacket cooling water.

  • PDF

Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가)

  • Joo, Hong-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.