• Title/Summary/Keyword: Seawater heat

Search Result 155, Processing Time 0.029 seconds

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

Antimicrobial Resistance and the Presence of Virulence Genes in Escherichia coli Strains Isolated from Ruditapes philippinarum in Gomso Bay, Korea (곰소만 해역의 바지락(Ruditapes philippinarum)에서 분리한 대장균 (Escherichia coli)의 항균제 내성 및 병원성 유전자의 보유성)

  • Kim, Tae-Ok;Eom, In-Seon;Park, Kwang-Ho;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.800-806
    • /
    • 2016
  • In total, 151 Escherichia coli isolates from Ruditapes philippinarum in Gomso Bay were analyzed for their susceptibility to 18 different antimicrobial agents and for genes associated with virulence. For virulence genes, each strain of the isolates was positive for the enterotoxigenic E. coli (ETEC)-specific heat-stable toxin (estA), enteroinvasive E. coli (EIEC)-specific invasion-associated locus (iaa) gene and enteropathogenic E. coli (EPEC)-specific attaching and effacing (eae) gene. According to a disk diffusion susceptibility test, resistance to ampicillin was most prevalent (23.2%), followed by resistance to amoxicillin (22.5%), ticarcillin (20.5%), tetracycline (18.5%), nalidixic acid (12.6%), ciprofloxacin (10.6%), streptomycin (9.9%), and chloramphenicol (6.6%). More than 35.8% of the isolates were resistant to at least one antimicrobial agent, and 19.9% were resistant to four or more classes of antimicrobials; these were consequently defined as multidrug resistant. Minimum inhibitory concentration (MIC) ranges for the antimicrobial resistance of the 15 different antimicrobial agents of 54 E. coli strains were confirmed by varying the concentrations from $32-2,048{\mu}g/mL$. Overall, these results not only provide novel insights into the necessity for seawater and R. philippinarum sanitation in Gomso Bay but they also help to reduce the risk of contamination by antimicrobial-resistant bacteria.

Investigation of Microalgal Growth, Tetraselmis sp. KCTC12432BP by Supplying Bicarbonate on the Ocean Cultivation (해양배양기 내 중탄산염 공급에 따른 Tetraselmis sp. KCTC12432BP 증식에 관한 연구)

  • Cho, Yonghee;Shin, Dong-Woo;Lee, Sangmin;Jeon, Hyonam;Ryu, Young-Jin;Lee, Jong-Chan;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.118-122
    • /
    • 2014
  • The ocean provide great benefits for microalgal mass cultures with maintaining stable temperature due to high specific heat, mixing by wave energy, and providing large area for large-scale microalgae cultures. In this study, we cultivated a marine green microalga, Tetraselmis sp. KCTC12432BP, using marine photobioreactors on the ocean for investigating the effect of $NaHCO_3$ concentration on the biomass productivities and evaluating the potential of ocean microalgae culture. The culture medium consist of three fold concentrated f/2-Si with 4 g/L of $NaHCO_3$, which is dissolved in natural seawater. After 11 days of cultivation, the cultures reached stationary phase at biomass concentration of 1.6 g/L. At that time, $NaHCO_3$ concentration of 0, 2, and 4 g/L were fed to the cultures. The daily productivities of 0.11, 0.19, 0.30 g/L/day were attained with feeding rate of 0, 2, and 4 g/L $NaHCO_3$, respectively. Biomass productivity of Tetraselmis sp. KCTC12432BP was a function of the $NaHCO_3$ feeding rate as expected. This research shows that the microalgae can grow with $NaHCO_3$ as carbon source in marine photobioreactors on the ocean while exploiting various benefits of ocean cultivation.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control (태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구)

  • Choi, Jinwook;Seo, Yongwon;Mo, Hyeong-Uk;Kim, Seolha
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.255-259
    • /
    • 2022
  • Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.

Hydrochemistry, Isotopic Characteristics, and Formation Model Geothermal Waters in Dongrae, Busan, South Korea (부산 동래 온천수의 수리화학 및 동위원소 특성, 생성모델 연구)

  • Yujin Lee;Chanho Jeong;Yongcheon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.229-248
    • /
    • 2024
  • This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.

Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel (HT-60강 용접부의 SCC및 AE신호특성에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyo-Sun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In order to characterize the microscopic fracture behaviour of the weldment din stress corrosion cracking(SCC) phenomena, SCC and acoustic emission(AE) tests were carried out simultaneously and the correlation between mechanical paramenters obtained from SCC and AE tests was investigated. In the case of base metal, much more AE events were produced at -0.5V than at -0.8V because of the dissolution mechanism before the maximum load. Regardless of the applied voltages to the specimens, however, AE events decreased after the maximum load. In the case of weldment, lots of AE events with larger amplitude $range(40{\sim}100dB)$ were produced because of the singularities of weld HAZ in comparision to the base metal and post-weld heat-treated(PWHT) specimens. Numerous and larger cracks for the weldment were observed on the fractured surfaces by SEM examination. From these results, it was concluded that SCC for the weldment appeared most severely in synthetic seawater. Weld HAZ was softened by PWHT which also contributed to the reduced susceptibility to corrosive environment in comparison to the weldment.

  • PDF

Isolation of Agarivorans sp. JS-1 and Characterization of Its β-Agarase (한천분해세균 Agarivorans sp. JS-1의 분리 및 β-아가라제의 특성 규명)

  • Jin Sun Kim;Dong-Geun Lee;Go-Wun Yeo;Min-Joo Park;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.357-362
    • /
    • 2023
  • This report looks at an agar-degrading marine bacterium and characterization of its agarase. Agar-degrading marine bacterium JS-1 was isolated with Marine agar 2216 media from seawater from the seashore of Sojuk-do, Changwon in Gyeongnam Province, Korea. The agar-degrading bacterium was named as Agarivorans sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequencing. The extracellular agarase was prepared from the culture media of Agarivorans sp. JS-1 and used for characterization. Relative activities at 20℃, 30℃, 35℃, 40℃, 45℃, 50℃, 55℃, and 60℃ were 70%, 74%, 78%, 83%, 87%, 100%, 74%, and 66%, respectively. Relative activities at pH 5, 6, 7, and 8 were 91%, 100%, 90%, and 89%, respectively. Its extracellular agarase showed maximum activity (207 units/l) at pH 6.0 and 50℃ in 20 mM Tris-HCl buffer. The residual activity after heat treatment at 20℃, 30℃, and 50℃ for 30 minutes was 90%, 70%, and 50% or more, respectively. After a 2-hour heat treatment at 20℃, 30℃, 35℃, 40℃, and 45℃, the residual activity was 80%, 68%, 65%, 63%, and 57%, respectively. At 50℃ and above, after heat treatment for 30 minutes, the residual activity was below 60%. Thin layer chromatography analysis suggested that Agarivorans sp. JS-1 produces extracellular β-agarases as they hydrolyze agarose to produce neoagarooligosaccharides such as neoagarohexaose (20.6%), neoagarotetraose (58.5%), and neoagarobiose (20.9%). Agarivorans sp. JS-1 and its thermotolerant β-agarase would be useful in the production of neoagarooligosaccharides, showing functional activity such as inhibition of bacterial growth and delay of starch degradation.

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.