• Title/Summary/Keyword: Seawater circulation pump

Search Result 3, Processing Time 0.019 seconds

Experimental study on vibration projection of seawater circulation pumps in nuclear power plant

  • Lin Bin;Huang Qian;Zhang Rongyong;Zhu Rongsheng;Fu Qiang;Wang Xiuli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2576-2583
    • /
    • 2024
  • In this paper, the similarity criterion and dimensionless conversion method combined with the elasticity condition and Hooke's law are used to derive the functional relationship of the maximum effective value of the vibration velocity between the prototype pump and the model pump. The seawater circulation pump of a nuclear power plant is used as the prototype pump, and the model pump is obtained by performance conversion and choosing the appropriate scale, and the vibration state of the model pump under different flow rates is measured and analyzed. The vibration data of the model pump through the function relationship to find out the vibration parameters of the prototype model pump, and compare with the vibration data of the seawater circulation pump in reality. It can be seen that with the increase of flow rate, the maximum effective value of the vibration velocity of both model and prototype decreases and then increases, and the relative error is small, the maximum value is 7.7757%. Therefore, it can be considered that the functional relationship of model pump converted to prototype pump derived in this paper can be used to analyze the vibration of the actual seawater circulation pump of coastal nuclear power plant.

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.