• Title/Summary/Keyword: Seawater Reverse Osmosis

Search Result 96, Processing Time 0.023 seconds

Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process (응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향)

  • Go, Gilhyun;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

A Review Based on Ion Separation by Ion Exchange Membrane (이온교환막을 통한 이온분리에 대한 총설)

  • Assel, Sarsenbek;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).

An Economic Analysis of Desalination for Potential Application in Korea (국내 적용을 위한 해수 담수화 경제성 분석)

  • Park, No Suk;Park, Hee Kyung;Park, Mi Hyun;Kim, Byung Duck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.48-54
    • /
    • 1998
  • Korea becomes one of the countries which suffer from water shortage. It is expected that its water shortage in the early 2000's will be more than 10% of the annual demand. The shortage problem is more serious in the coastal areas where many industry complex locate. To solve the shortage problem, seawater desalination gets more attention as an alternative water supply source since Korea is surrounded by sea on its three sides. For potential application of seawater desalination in Korea, an economic analysis was conducted using cost data for the plants in the Middle Ease areas, The United states and others. The study is to provide a basis for the government to establish a strategy for promoting seawater desalination in Korea. It is discussed that the Reverse Osmosis (RO) process gets cheaper over times than the thermal processes of Multi-stage Flash Distillation (MSF) and Multi Effect Distillation (ME), especially in case where the capacity is less than about 50,000 ton/day. The unit cost of RO seawater is analyzed about US$1.35/ton in 1990 price. Since the Desalination plant can be operated regardless of weather conditions, industries in Korea's coastal areas which suffer from frequent droughts and water shortages are recommended to look into this option with more attention.

  • PDF

Effects of Antiscalant on Inorganic Fouling in Seawater Reverse Osmosis Membrane Processes (해수담수화 역삼투막 공정의 무기질오염에 대한 스케일 억제제 효과 연구)

  • Kang, Nam-Wook;Lee, Seock-Heon;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.677-685
    • /
    • 2011
  • The reverse osmosis membrane processes have several operational problems. Fouling by inorganic scale occurs on membrane surface due to increases in concentrations over solubility by retaining ions on feed side of the membrane. Inorganic scales could be controlled by antiscalants or acid addition. In this study, three antiscalants having different characteristics were selected and evaluated on efficiency of $CaCO_3$ scale control. The $CaCO_3$ scale was inhibited by the antiscalants : 0.4 mg/L for SHMP, 0.6 mg/L for Spectra Guard, and 3 mg/L for Flocon 150 N. Increasing concentration factors of simulated sea water resulted in increases in antiscalant doses for the scale control. The increases in doses were positively proportional to the concentrate factors used in this study. Spectra Guard, one of the polyacrylate type antiscalants, was the most effective to control $CaCO_3$ scale. The antiscalants with the different scale inhibition time and doses implied the different control mechanisms.

Removal Characteristics of Organic Matters in Pretreatment and Reverse Osmosis Membrane Processes for Seawater Desalination (해수담수화 전처리 및 역삼투막여과 공정의 유기물 제거특성)

  • Kim, Dong-Kwan;Choi, June-Seok;Lee, Chang-Kyu;Kim, Jinho;Choi, Jeong-Hak;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.492-497
    • /
    • 2014
  • This study investigated removal characteristics of organic matters in pretreatment and reverse osmosis (RO) membrane processes for seawater desalination. Also, the influence of the changes in characteristics of organic matters on the membrane fouling was assessed. The pretreatment processes included dual media filtration (DMF), pressurized membrane filtration (MF), and submerged membrane filtration (SMF). Turbidity, UV absorption at 254 nm, dissolved organic carbon, size exclusion chromatography (SEC), fluorescence excitation emission matrix (FEEM), and transparent exopolymer particles (TEP) in raw and processed waters were analyzed. Ions and minerals were not removed by any pretreatment process tested, but were removed over 99% through the RO membrane process. Hydrophobic organics, which can play major role in organic membrane fouling, were relatively readily removed compared with hydrophilic ones. Membrane based pretreatment such as MF and SMF exhibited better removals of organics than conventional DMF. As the levels of organics in pretreated water decreased, the silt density index (SDI) decreased. MF treated water exhibited the lowest SDI value; this is possibly due to the lowest TEP ($0.1-0.4{\mu}m$) concentrations.

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.

In vitro culture of rare plant Bletilla striata using Jeju magma seawater (제주 용암해수를 이용한 희귀식물 자란(Bletilla striata)의 기내배양)

  • Bae, Kee-Hwa;Kim, Ki Ju;Kim, Nam Young;Song, Jae Mo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • This experiment was conducted to investigate the effect of various type of Magma seawater (MSW) concentrations on plant growth and useful mineral contents in Bletilla striata. In the RO (Reverse Osmosis) and ED (Electronic Distal) treatment, hardness of medium was poored in 3.0 g/L gelrite but increased in 8.0 g/L plant agar, 38,000 and $2,000g/cm^2$ respectably. We analyzed the morphological and physiological characteristics differences of B. striata treated various MSW. Survival frequency of plant and growth (shoot length, shoot diameter, root length, root diameter, shoot/root ratio) were significantly increased in RO and ED treatment at 50% and 10%, especially. Chlorophyll contents in ED treatments were higher than those in control and RO treatment. The content of strontium (Sr) in 20, 50, 75, 100% ED treatment, were higher than those in the control and RO, ED 1, 5, 10% treatment. These results showed that treatment of ED with the range of 20~100% could be used to supply the strontium enriched orchid plant. It is considered that MSW may be applied for use in Magma seawater to promotion of growth and produced functional plant.

The Effect of Feed Temperature On Permeate Flux During Membrane Separation (온도가 막분리 투과성능에 미치는 영향)

  • Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Seung Won;Ji, Ho;Jung, Hyeon Ji;Won, Hye Jung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The feed temperature has an effect on the performance during desalination of seawater by membrane separation. When the permeate flux intends to increase using the waste heat, it is necessary to analyze the effect of feed temperature precisely on the membrane performance. The experiments were carried out to investigate the performance of membranes by varying the seawater temperature from $10^{\circ}C$ to $60^{\circ}C$. The increase of permeate flux with increase of feed temperature was interpreted as the change of water viscosity and the membrane itself. While the increase of permeate flux could be predicted by the viscosity change in case of nanoflitration membrane, there exists 30% difference between the experiment data and the prediction by the viscosity change in case of reverse osmosis (RO) membrane, which seems to be due to 8% decrease of the pore size in 60caused by the contraction of membrane with the increase of temperature. Therefore, the desalination of seawater should be carried out within the range that the elevation of temperature does not cause the alteration of membrane itself even for the purpose of increasing the permeate flux.

Analysis of Total Bacteria, Enteric Members of γ-proteobacteria and Microbial Communities in Seawater as Indirect Indicators for Quantifying Biofouling

  • Lee, Jin-Wook;Kim, Sung-Min;Jung, Ji-Yeon;Oh, Byung-Soo;Kim, In S.;Hong, Soon-Kang
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In this study, total bacteria, enteric members of the $\gamma$-proteobacteria, and microbial communities in seawater were analyzed as indirect indicators for quantifying biofouling. Biomass in seawater can significantly affect feed water pretreatment and membrane biofouling of reverse osmosis desalination processes. The purpose of this paper is to investigate microbiological quantity and quality of seawater at the potential intake of a desalination plant. For this analysis, the total direct cell count (TDC) using 4'-6-diamidino-2-phenylindole (DAPI)-staining and DNA-based real-time PCR were used to quantify the total bacteria and relative content of enteric members of $\gamma$-proteobacteria in seawater, respectively. In addition, microbial communities were examined using 16S rRNA gene cloning and bacterial isolation to identify the most abundant bacteria for a further biofouling study. The experimental results of this study identified about $10^6$ cells/mL of (total) bacteria, $10^5$ 16S rRNA gene copies/mL of enteric $\gamma$-proteobacteria, and the presence of more than 20 groups of bacteria.