• Title/Summary/Keyword: Seawater Pipe

Search Result 51, Processing Time 0.025 seconds

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Cavitation Analysis on Ship Seawater Pump Using CFD (CFD를 이용한 선박용 해수펌프의 공동현상에 대한 분석)

  • Kim, Bu-Gi;Kim, Hong-Ryeol;Yang, Chang-Jo;Kim, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.400-406
    • /
    • 2017
  • The model used in this study was reversed to analyze the cause of excessive damage that occurred inside the rotating system and pipe system of a centrifugal-type seawater pump on a ship. For this purpose, internal flow analysis on a cooling seawater pump was performed using CFD. As a result, the shape and boundary conditions of the target pump were set by reverse engineering, and pump efficiency at a design operating point of $125m^3/h$ was calculated as 85.3 % with a head of 32.0 m. The maximum efficiency point of the target pump was estimated to be 86.2 % at $150m^3/h$, but this differed from the actual operating point. At $112.5m^3/h$, which was the lowest flow point, flow was unstable due to the characteristics of the low flow point and analysis convergence was not good. The purpose of this study was to clarify the cause of ongoing cavitation in seawater pumps and piping systems in operation. Future research will be needed to clarify causes for pipe systems in the future by performing calculations for the total piping system of an inlet and outlet, in addition to measuring the flow rate of each branch pipe.

Evaluation of the corrosion property on the welded zone of seawater pipe by A.C shielded metal arc welding (교류 피복아크 용접에 의한 해수 배관 용접부위의 부식 특성 평가)

  • Jeong, Jae-Hyun;Kim, Yun-Hae;Moon, Kyung-Man;Lee, Myeong-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.877-885
    • /
    • 2013
  • A seawater pipe of the engine room in the ships is being surrounded with severely corrosive environments caused by fast flowing of the seawater, containing aggressive chloride ion and high conductivity etc.. Therefore, the leakage of the seawater from its pipe have been often occurred due to its local corrosion by aggressive chloride ions. Subsequently, its leakage area is usually welded by AC shielded metal arc welding with various electrodes. In this study, when the sea water pipe is welded with several types of electrodes such as E4301, E4311, E4313 and E4316, a difference of the corrosion resistance on the welding metal zones was investigated using an electrochemical method, observing microstructure, measuring polarization behaviors and hardness. The weld metal zone welded with E4313 electrode exhibited the lowest value of hardness compared to other weld metal zones. In addition, its zone indicated also the best corrosion resistance than those of other weld metal zones. Furthermore, all of the weld metal zones revealed a relatively better corrosion resistance than those of the base metal zones. and also showed higher hardness than the base metal zones.

자율운항선박 보조기기 및 배관 실시간 모니터링 및 고장예측 시스템 연구

  • 최경열;박순호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.438-440
    • /
    • 2022
  • 자율운항선박 기술개발사업 중 2세부(자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측 진단 기술 개발)과제에서 자율운항선박 핵심장비 중 보조기기 2종(Pump, Purifier), 배관(Seawater Pipe, Steam Pipe)의 실시간 모니터링 및 고장예측 시스템의 연구 및 개발을 목표로 한다.

  • PDF

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

A Study on the Absorptive Silencer for Reducing Noise Propagate in Seawater Pipes on Ship (함정의 해수 배관소음 저감을 위한 흡음형 소음기 연구)

  • Seo, Youngsoo;Park, Kyenghoon;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.770-776
    • /
    • 2013
  • Fluid-borne noise produced by seawater circulating pumps propagates through the seawater connected pipes and radiates from the hull opening of a ship. This noise causes the increases of underwater radiated noise and self noise of ship. To reduce the noise propagation through the seawater connected pipes, absorptive silencer must be needed. In this paper, theoretical model to analyze the transmission loss of absorptive silencer was presented and the design parameters of absorptive silencer were verified. Theoretical calculations were performed according to a thickness, a length, an internal pressure and mechanical properties of its absorptive material in order to analyze the characteristics of absorptive silencer. From the theoretical calculation results, the absorptive silencer was manufactured and transmission loss was measured in the test facilities. The results of theory and measurement are compared and discussed.

Vibration Characteristics and its Countermeasure of Orifice Pipe for Reduction Gear Lubrication of Azimuth Thruster (아지무스 추진기의 감속 기어 윤활용 오리피스 파이프 진동특성과 방진대책)

  • Eam, Gitak;Barro, Ronald D.;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.555-558
    • /
    • 2013
  • A type of electric propulsion employed by specialized purpose vessels or offshore is the azimuth thruster. Azimuth thruster application had been increasing recently and resulted to excellent vessel maneuverability. However, this system is very complex and some of its major component being exposed under the seawater level presents difficulty in sealing design. For Polar class icebreaker operating in extreme sea condition, this requires a high level of reliability and safety. In this study, the characteristics of lubricating orifice pipe structural vibration installed at the lower reduction gear were investigated and analyzed through beam analysis theory and comparison of experiments. Propeller excitation and the resonant modes of vibration causing excessive vibration and suitable countermeasures to prevent damage due to vibration fatigue on the pipe are presented.

  • PDF

Electrochemical Evaluation of Corrosion Property of Welded Zone of Seawater Pipe by DC Shielded Metal Arc Welding with Types of Electrodes (선박 해수배관에서 용접봉의 종류에 따라 직류 아크 용접한 용접부위의 부식특성에 관한 전기화학적 평가)

  • Lee, Sung-Yul;Lee, Kyu-Hwan;Won, Chang-Uk;Na, Shane;Yoon, Young-Gon;Lee, Myeong-Hoon;Kim, Yun-Hae;Moon, Kyung-Man;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.79-84
    • /
    • 2013
  • The seawater pipes in the engine rooms of ships are surrounded by severely corrosive environments caused by fast flowing seawater containing chloride ions, high conductivity, etc. Therefore, it has been reported that seawater leakage often occurs at a seawater pipe because of local corrosion. In addition, the leakage area is usually welded using shielded metal arc welding with various electrodes. In this study, when seawater pipes were welded with four types of electrodes(E4311, E4301, E4313, and E4316), the difference between the corrosion resistance values in their welding zones was investigated using an electrochemical method. Although the corrosion potential of a weld metal zone welded with the E4316 electrode showed the lowest value compared to the other electrodes, its corrosion resistance exhibited the best value compared to the other electrodes. In addition, a heat affected zone welded with the E4316 electrode also appeared to have the best corrosion resistance among the electrodes. Furthermore, the corrosion resistance of the weld metal zone and heat affected zone exhibited relatively better properties than that of the base metal zone in all of the cases welded with the four types of electrodes. Furthermore, the hardness values of all the weld metal zones were higher than the base metal zone.