• 제목/요약/키워드: Seawater Desalination

검색결과 193건 처리시간 0.02초

국내 해수담수화 플랜트 적용 활성화 방안 연구 (The Research on Activation Plan for Seawater Desalination Plant Application in Korea)

  • 손진식;양정석;박진서
    • 상하수도학회지
    • /
    • 제23권2호
    • /
    • pp.251-255
    • /
    • 2009
  • Foreign and domestic seawater desalination plant market investigation was performed to analyze the worldwide trend of seawater desalination plant market and to establish the activation plan for seawater desalination plant application. Water demand and seawater desalination related laws and regulations were investigated and analyzed for the activation plan. RO type and large scale plants are popular nowadays however there are only small plants in island region in Korea. There will be about $1 million\;m^3/day$ deficit in 2015 according to the water demand forecasting from Ministry of Environment and Ministry of Land, Transportation, and Maritime Affairs in Korea. Therefore, it is necessary to activate the domestic application of seawater desalination plant to secure stable water resources. To activate the domestic application of seawater desalination plant, first, we need to establish regulations, support system in the water service law for seawater desalination plant. Second, related Ministry should increase the support for the operation and management of seawater desalination plant and suggest the construction of seawater desalination plant for water resources security near seaside region.

미래 그린 해수담수화 기술 (Future green seawater desalination technologies)

  • 김정빈;홍승관
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

A Study on Boron Removal by Mineral Cluster Coagulant for Seawater Desalination Application

  • Vu, Hanh Hong;Cho, Bong-Yeon
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.227-230
    • /
    • 2011
  • Seawater desalination technology is a complicated and expensive process. Besides salt removal from seawater, thesignificant problem that needs to be solved is boron removal. Boron removal is difficult so it is a considerable challenge for the desalination process. The main technology of this process is reverse osmosis (RO). RO can remove salt and boron more effectively than other technologies. In a conventional seawater desalination process, coagulant is utilized for pre-treatment but it is difficult to remove boron through this stage. In this study, a coagulant called Mineral Cluster was examined for boron removal. Therefore, Mineral Cluster can be considered a potential coagulant for boron removal in seawater desalination technology.

역삼투법에 의한 해수의 담수화에 관한 연구 (Desalination of Seawater by Reverse Osmosis)

  • 이선주
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.155-164
    • /
    • 2004
  • Many countries, including Korea, suffer from a shortage of freshwater. With increases in population and the quality of life, along with large-scale expansion in industrial and agricultural activities, more freshwater is needed. Available resources, Including ground water, are limited, and desalination presents the opportunity for a new unlimited source of freshwater from the sea. The objectives of this study were to test membrane performance in seawater desalination and to examine the quality of water produced. bath well and sea water were used as water sources. Typically used membrane for seawater desalination and high rejection seawater desalination membrane are maintained at almost same recovery rate and permeate flux, while the conductivity was lower in the operation of typically used seawater membrane. The treated water quality using two types of membranes is satisfied with the Korea drinking water quality standards.

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2002년도 제10회 하계 Workshop
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF

해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계 (Performance Analysis of Freezing Desalination System using Seawater Heat Pump)

  • 이호생;이승원;윤정인;김현주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.373-378
    • /
    • 2011
  • 해수 히트펌프를 이용한 냉동법 담수화시스템의 개발을 위한 시스템 설계 및 성능 해석을 수행하였다. 해수 히트펌프시스템의 열역학적 모델은 냉동사이클을 이용하였고, 이를 해수 담수화시스템에 적용하였다. 응축기의 유입 해수온도 및 증발기의 얼음 생성 비율에 따른 해수 히트펌프 시스템의 성능을 분석하고, 이에 따른 담수 생산량 및 담수 1kg 생산에 대한 소요 에너지 등 냉동법 담수화 시스템의 성능을 비교 분석하였다. 압축기 소요동력 및 응축기 용량은 응축기로 유입되는 해수온도가 감소함에 따라 감소하였다. 담수 1kg 생산에 따른 소요 에너지는 응축기 유입 해수온도가 $8^{\circ}C$일 때가 $20^{\circ}C$일 때에 비해 약28.9% 감소하였다.

해수담수화 후보지역 조사 (A survey on the regional criteria required desalination)

  • 최병습
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.325-330
    • /
    • 1998
  • Seawater desalination is the production of the water, suitable for human consumption, from seawater. Since the water supply produced by desalination is at least as good, in quality than that provided by traditional catchment, the decision as to whether or not desalination plant is to be installed should be made on technical, social, economic grounds. By analysis of these criteria, we selected some regions required seawater desalination.

  • PDF

Delphi 기법을 이용한 해수담수화 플랜트 유망 국가 분석 (Analysis of Promising Country for Seawater Desalination Plant Using Delphi Method)

  • 양정석;김일환
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2351-2357
    • /
    • 2013
  • 해수담수화 플랜트 시장 진출 유망 국가 분석을 위한 지수를 개발하였고 이를 위해서 관련된 자료를 수집하고 분석하였다. 자료의 특성상 국가별로 편차가 커 스케일 재조정 방법을 통해 각 지표별로 표준화를 실시하였고, 해수담수화 플랜트에 대한 전문가들을 대상으로 Delphi 기법을 통한 설문 조사를 통해 가중치를 결정하였다. 총 23개의 지표를 3가지 요소로 나누어 각각의 항목별로 가중치를 결정하였으며, 사우디아라비아, UAE, 쿠웨이트, 이란, 카타르, 중국, 싱가포르, 인도, 알제리, 터키, 미국 등 11개 국가, 즉 해수담수화 플랜트 해외 시장 유망 국가들에 대해서 지수를 산정하였다. 산정된 지수를 비교하였을 때 미국이 0.537, 중국이 0.490, 사우디아라비아가 0.329로 나타났다. 현지 사정을 고려하였을 때는 미국과 중국은 해외 시장 진출을 하는데 많은 어려움이 있을 수 있지만 그 외에 국가에 대해서는 본 연구의 결과를 바탕으로 전략적으로 시장 진출을 도모하는데 도움이 될 것으로 판단된다.

기술사마당_기술자료 - 해수담수화설비의 전처리방안에서 Beach Well Intake 방법의 적용성 검토 (A Study for Adaptability of Beach Well Intake System as a Pre-treatment Method of Seawater Desalination Plant)

  • 이영규
    • 기술사
    • /
    • 제42권6호
    • /
    • pp.47-52
    • /
    • 2009
  • According to increasing demand of water mainly due to the growth of population and increased water consumption, many countries either face or worry about the shortage of fresh water. Proportionately, importance and efforts of each country to develop the potable water has been gradually increasing as well. Among others, desalination of seawater has been developed to one of the solutions mainly from the middle east and other arid regions to produce large quantity of fresh water from seawater. We installed beach seawater collector wells to develop the filtered seawater supply for desalination in a refinery. We came to a conclusion that the beach seawater collector well is one of the recommendable alternatives of seawater pre-treatment for desalination applications with lower operating cost and higher efficiency.

  • PDF

배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석 (Analysis of hydraulic system for seawater desalination plant through piping analysis program)

  • 최지혁;최용준;양흥식;이상호;최준석
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.