• Title/Summary/Keyword: Seasonal Growth

Search Result 477, Processing Time 0.031 seconds

Dynamics of Phytoplankton Communities of Major Dam Reservoirs in Han River System (한강 수계 주요 인공댐호의 식물플랑크톤 군집 동태)

  • Youn, Seok Jea;Park, Hae-Kyung;Shin, Kyoungae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.317-325
    • /
    • 2010
  • This study was to investigate phytoplankton communities and to evaluate the effects of hydrological and physical-chemical environmental factors in major five dam reservoirs in the Han River water system. Annual average of chlorophyll a concentration in Lake Paldang, Lake Cheongpyeong and Lake Doam was higher than that of Lake Chungju and Lake Hoengseong. The opposite seasonal variation patterns of phytoplankton growth were observed in dam reservoirs; the highest biomass in spring of dry season in Lake Paldang, Lake Cheongpyeong which are the river-type reservoirs and Lake Doam where turbidity was high throughout the year, and in summer and autumn of rainy season in Lake Chungju and Lake Hoengseong which are the lake-type reservoirs, indicating that the seasonal pattern for growth of phytoplankton in on-river reservoirs is mainly determined by hydrologic characteristics. The dominant species of phytoplankton in Lake Paldang, Lake Cheongpyeong and Lake Doam, where the concentration of nutrients was relatively high, were Bacillariophyceae such as Stephanodiscus hantzschii, Aulacoseira granulata var. angustissima in Lake Paldang and Lake Cyeongpyeong and Nitzschia spp. in Lake Doam throughout all season. The dominant species of phytoplankton in Lake Chungju and Lake Hoengseong which showed the oligo-mesotrophic state, were Bacillariophyceae such as Stephanodiscus hantzschii, Cyclotella pseudostelligera in spring and winter, but Cyanophyceae such as Microcystis spp. in summer.

PRODUCTION FROM FINE WOOL SHEEP IN THREE AREAS IN NORTHERN CHINA

  • Masters, D.G.;Purser, D.B.;Yu, S.X.;Wang, Z.S.;Yang, R.Z.;Liu, N.;Wang, X.L.;Lu, D.X.;Wu, L.H.;Rong, W.H.;Ren, J.K.;Li, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.4
    • /
    • pp.305-312
    • /
    • 1990
  • The seasonal changes in production, the systems of management and the seasonal climatic and feeding conditions are described for three farms representative of the major areas for growing fine-wool sheep in northern China. At all farms, summer and autumn were seasons of rapid liveweight gain and wool growth. In the winter and spring, during lactation, liveweight declined wool growth decreased by approximately 70%, and fibre diameter by 4 to 8 microns. The wool produced was characterized by a very low clean wool yield (39-51%). Greasy fleece weights ranged from 4.5 to 8.0 kg and average diameter of wool fibres from 20.5 to 23 microns. The number of lambs born per 100 ewes mated ranged from 79 to 95, lamb weights ranged from 3.8 to 4.5 kg, and weaning weights ranged from 17 to 25 kg. Overall, the patterns of sheep production were similar to those found in seasonally arid environments (such as in the mediterranean climatic zone). Yield of clean wool and therefore clean fleece weights were far below those in most other fine-wool producing areas of the world.

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass (Dactylis glomerata L.) over Cutting Stages Ⅰ. Seasonal regrowth and anatomy of leaves (오차드그라스(Dactylis glomerata L.)品種들의 刈取에 따른 葉生長과 收量形成 Ⅰ. 오차드그라스 品種들의 季節別 葉의 再生과 組織形成)

  • Kim, Hoon-Kee;Lee, Ho-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf grwoth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly there-after during the rest cutting stages. In cultivars, Potomac was showed higher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrwoth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly form 15 days after cutting and leaf weight was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan (서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화)

  • Lee, S.;Ghim, Y.S.;Kim, S.W.;Yoon, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

Empirical Relations of Nutrients, N : P Ratios, and Chlorophyll in the Drinking Water Supplying Dam and Agricultural Reservoirs

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.512-518
    • /
    • 2008
  • This study were to evaluate trophic conditions, N : P ratios, and empirical relations of chlorophyll (CHL) systematically using TN, TP, and CHL values in agricultural reservoirs and drinking water supplying dams. During the study, nutrients and CHL varied depending on seasonal conditions and types of the reservoirs, but most reservoirs were diagnozed as eutrophic to hypertrophic. Mass ratios of TN : TP averaged 93.1 (range: $0.68{\sim}1342$) and about 96.6 % of the total observations (n=516) was > 17 in the N : P ratios. This result suggests that P was a potential factor limiting algal growth in the entire reservoir. Thus, TN : TP ratios were a function of phosphorus rather than nitrogen. Regression analysis of log-transformed N : P ratios against TP in DWDRs and ARs showed that ratios were linearly declined with an increase of TP ($R^2$>0.66; p<0.001). Seasonal mean CHL was minimum ($4.3{\mu}g\;L^{-1}$, range: $0.1{\sim}39.7{\mu}g\;L^{-1}$) in premonsoon, and was similar between the monsoon and postmonsoon. In contrast, one of the tremendous features was that values of CHL was greater in the ARs than DWDRs. Thus, the spatial and temporal patterns in CHL were similar to those of TP but not TN. Empirical models of CHL-TP showed that CHL variation could explain average 15.3% and 11.3% in DWDRs and ARs, respectively. Seasonal analysis of empirical models showed that CHL-TP relations were stronger in postmonsoon than those of premonsoon and monsoon.

Seasonal Variation and Measurement Uncertainty of UV Aerosol Optical Depth Measured at Gwangju, Korea (자외선 영역의 에어로졸 광학 깊이의 계절 분포 및 불확실도의 계산)

  • Kim, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.631-637
    • /
    • 2005
  • A UV-MFRSR instrument was used to measure the global and diffuse irradiances in 7 narrowband channels in the UV range 299.4, 304.4, 310.9, 317.3. 324.5, 331.3 and 367.4 nm at Gwangju ($35^{circ}\;13'N\;126^{circ}\;50'E$), Korea. Spectral UV-AOD was retrieved using the Langley plot method for data collected from April 2002 to July 2004. Temporal variation of AOD at 367.4 nm ($AOD_{367nm}$) showed a maximum in June ($0.95\pm0.43$) and a minimum in February ($0.31\pm0.14$). Clear seasonal variation of $AOD_{367nm}$ was observed with average values of $0.68\pm0.29,\;0.82\pm0.41,\;0.48\pm0.22\;and\;0.42\pm0.21$ in spring, summer, fall and winter, respectively, Average Angstrom exponent for the entire monitoring period was $2.03\pm0.75$ in the UV-A ($324.5\∼367.4$ nm) range. Seasonal variation of the Angstrom exponent showed a maximum in spring and a minimum in summer. The lowest Angstrom exponent in summer might be due to hygroscopic growth of particles under conditions of high relative humidity. UV-AOD changes under different atmospheric conditions were also analyzed. Uncertainty in retrieving spectral UV-AOD was also estimated to range between $\pm0.218\;at\;304.4\;nm\;and\;\pm0.135\;at\;367.4\;nm$. Major causes of uncertainty were total column ozone retrieval and extraterrestrial irradiance retrieval at shorter and longer wavelengths, respectively.

Seasonal Variations of Marine Water Quality and Eutorphication Index in Mokpo Harbour (목포항의 수질 및 부영양도의 계절 변화)

  • Kim Kwang Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 2001
  • The in situ observations and the seawater analyses were conducted for 3 years from August 1996 to August 1999 in order to elucidate and evaluate seasonal variations of marine water quality and trophic state in Mokpo harbour of Korea. Compared the seasonal seawater qualities of Mokpo harbour with the OECD standards of trophic classification in parameters such as Secchi depth, dissolved inorganic nitrogen, phosphate phosphorus and chlorophyll-a, the trophic level of seawater in Mokpo harbour was evaluated to be in mesotrophic or eutrophic state through all 4 seasons and to be in eutrophic state, particularly In summer. The estimation of pollution index by eutrophication showed the seawater quality of Mokpo harbour to deteriorate and fall under the regular grades through all 4 seasons, although the seawater quality of Mokpo harbour was evaluated to be equivalent to the second or third class of the Korean seawater quality standards in view of COD values. The results of eutrophication index estimation showed the high potentiality of red tide occurrence In Mokpo harbour, particularly in summer or fall. In the light of the average atomic ratio of N/P in seawater, the limiting nutrient factor against the growth of phytoplankton was concluded to be phosphorus rather than nitrogen in Mokpo Harbour.

  • PDF

A Study on the Seasonal Pre-reserved Planning of Water Resources in Korea (수자원의 계절별 적기확보방안에 관한 연구)

  • Heo, Jun-Haeng;Song, Jae-U;Lee, Gil-Chun
    • Water for future
    • /
    • v.16 no.2
    • /
    • pp.111-122
    • /
    • 1983
  • The water demand has been rapidly increased by the growth of population, industrialization, unbanization, water pollution and so on. This study carried out the seasonal pre-reserved planning for the five zones, comparing the water demand with the available water resources up to the goal year, 2001. The results of this study are as follows; 1) It is principle that the monthly water demand is supplied by the surface and ground water as the increasing tendency of it, and the deficit of water is supplemented by the water supplying capacity of dam. And water demand should be completely reserved before supplying the deficit of water. 2) The monthly and seasonal maximum deficit of water demand take place in June and summer. 3) The periods when the deficit of water demand exceeds the water supplying capacity of dam are 1984-1990, 1994-2001 in zone III. 4) To reserve the deficit of water demand in zone III, we would like to pre-construct Masan-Keumbo estuary barrage from 2001 to 1991 in Seomjin river basin, the deficit of water demand is supplied by the diversion of water from Yeongsan river basin with the developments of the ground water and small reservoirs until 1986.

  • PDF

Seasonal biomass and carbon, nitrogen contents change of Schoenoplectus trigueter in Nakdong river estuary (낙동강 하구 갯벌에 생육하는 세모고랭이(Schoenoplectus triqueter)의 생체량 및 탄소, 질소 함량의 계절 변화)

  • An, Soonmo;Lee, Jiyoung;Jeong, Sinjae
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.39-49
    • /
    • 2006
  • Seasonal biomass and carbon, nitrogen contents change of marsh club-rush (Schoenoplectus trigueter) was investigated in Nakdong river estuary, located near Busan, Korea. New shoot of S. trigueter sprouted from tuber in April and fast growth season was followed until mature in August. Mature lengths of shoot and root were 60 and 9.4 cm, respectively. The increase of biomass showed similar seasonal trends with length. Mature biomass were $3.5gind^{-1}$ in wet weight and $0.6gind^{-1}$ in dry weight. The biomass of S. trigueter in areal basis was also highest during July and August ($186gDWm^{-2}$). The shoot of S. trigueter was disappeared in October from the ground but the biomass of shoot was maintained as a form of detritus in sediment. The amount of S. trigueter detritus was about 30~50% of the biomass in August. During winter, the amount of detritus decreased with time but the biomass of root+tuber remained same, implying the root+tuber part is alive. The net productivity of S. trigueter estimated from biomass change were $538gDWm^{-2}yr^{-1}$, $240g-Cm^{-2}yr^{-1}$, $8.2g-Nm^{-2}yr^{-1}$ in dry weight, carbon and nitrogen equivalent respectively. During winter, carbon to nitrogen ratio in detritus increased implying the preferred remineralization of nitrogen during microbial degradation.

  • PDF

Seasonal changes in copepod biomass and production in Gamak Bay, Korea

  • Moon, Seong Yong;Oh, Hyun Ju
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • To better understand the ecological functioning of the coastal ecosystem in Gamak Bay on the southern coast of Korea, seasonal changes in the density, biomass, and secondary production of the copepod community were investigated. Environmental measurements (temperature, salinity, and chlorophyll a) and copepod sampling were performed seasonally from January to December 2006. The mean density of copepods (excluding nauplii) varied from 949 to 5,999 ind · m-3; copepod density was at its highest from March to July. The copepod community comprised 32 taxa, including Calanoida, Cyclopoida, and Harpacticoida. The predominant species were Paracalanus parvus s. l., Acartia omorii, Eurytemora pacifica, Oithona similis, A. erythraea, Centropages abdominalis, Pseudodiaptomus marinus, and Calanus sinicus. There were significant spatial and seasonal variations in copepod total biomass, which ranged from 0.33 to 43.10 mg C m-3. Mean secondary production of the copepods in Gamak Bay, estimated as 2.05 ± 1.63 mg C m-3 d-1 using the Huntley and Lopez growth model, was over 2 times higher than the value given by application of the Hirst and Bunker model (1.09 ± 0.85 mg C m-3 d-1). The daily production rate to biomass (P/B) ratio varied between 0.08 and 0.86 d-1 (Huntley and Lopez model), and 0.18 and 0.33 d-1 (Hirst and Bunker model). Our results emphasize the ecological significance of using models to estimate the secondary production of copepods and provides the first report of copepod production in Gamak Bay.