• Title/Summary/Keyword: Seasonal ARIMA

Search Result 110, Processing Time 0.023 seconds

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

Missing Data Imputation Using Permanent Traffic Counts on National Highways (일반국토 상시 교통량자료를 이용한 교통량 결측자료 추정)

  • Ha, Jeong-A;Park, Jae-Hwa;Kim, Seong-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.1 s.94
    • /
    • pp.121-132
    • /
    • 2007
  • Up to now Permanent traffic volumes have been counted by Automatic Vehicle Classification (AVC) on National Highways. When counted data have missing items or errors, the data must be revised to stay statistically reliable This study was carried out to estimate correct data based on outoregression and seasonal AutoRegressive Integrated Moving Average (ARIMA). As a result of verification through seasonal ARIMA, the longer the missed period is, the greater the error. Autoregression results in better verification results than seasonal ARIMA. Traffic data is affected by the present state mote than past patterns. However. autoregression can be applied only to the cases where data include similar neighborhood patterns and even in this case. the data cannot be corrected when data are missing due to low qualify or errors Therefore, these data shoo)d be corrected using past patterns and seasonal ARIMA when the missing data occurs in short periods.

Forecasting the East Sea Rim Container Volume by SARIMA Time Series Model (SARIMA 시계열 모형을 이용한 환동해 물동량 예측)

  • Min-Ju Song;Hee-Yong Lee
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.75-89
    • /
    • 2020
  • The purpose of this paper was to analyze the trend of container volume using the Seasonal Autoregressive Intergrated Moving Average (SARIMA) model. To this end, this paper used monthly time-series data of the East Sea Rim from 2001 to 2019. As a result, the SARIMA(2,1,1)12 model was identified as the most suitable model, and the superiority of the SARIMA model was demonstrated by comparative analysis with the ARIMA model. In addition, to confirmed forecasting accuracy of SARIMA model, this paper compares the volume of predict container to the actual volume. According to the forecast for 24 months from 2020 to 2021, the volume of containaer increased from 60,100,000Ton in 2020 to 64,900,000Ton in 2021

Forecasting the KTX Passenger Demand with Intervention ARIMA Model (개입 ARIMA 모형을 이용한 KTX 수요예측)

  • Kim, Kwan-Hyung;Kim, Han-Soo;Lee, Sung-Duk;Lee, Hyun-Gi;Yoon, Kyoung-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1715-1721
    • /
    • 2011
  • For an efficient railroad operations the demand forecasting is required. Time series models can quickly forecast the future demand with fewer data. As well as the accuracy of forecasting is excellent compared to other methods. In this study is proposed the intervention ARIMA model for forecasting methods of KTX passenger demand. The intervention ARIMA model may reflect the intervention such as the Kyongbu high-speed rail project second phase. The simple seasonal ARIMA model is predicted to overestimate the KTX passenger demand. However, intervention ARIMA model is predicted the reasonable results. The KTX passenger demands were predicted to be a week units separated by the weekday and weekend.

  • PDF

Performance Evaluation of Time Series Models using Short-Term Air Passenger Data

  • Park, W.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.917-923
    • /
    • 2012
  • We perform a comparison of time series models that include seasonal ARIMA, Fractional ARIMA, and Holt-Winters models; in addition, we also consider hourly and daily air passenger data. The results of the performance evaluation of the models show that the Holt-Winters methods outperforms other models in terms of MAPE.

Comparison of time series predictions for maximum electric power demand (최대 전력수요 예측을 위한 시계열모형 비교)

  • Kwon, Sukhui;Kim, Jaehoon;Sohn, SeokMan;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.623-632
    • /
    • 2021
  • Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

Solar Power Generation Forecast Model Using Seasonal ARIMA (SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축)

  • Lee, Dong-Hyun;Jung, Ahyun;Kim, Jin-Young;Kim, Chang Ki;Kim, Hyun-Goo;Lee, Yung-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

Forecasting of Foreign Tourism demand in Kyeongju (경주지역 외국인 관광수요 예측)

  • Son, Eun Ho;Park, Duk Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.2
    • /
    • pp.511-533
    • /
    • 2013
  • The study used a seasonal ARIMA model to forecast the number of tourists to Kyeongju foreign in a uni-variable time series. Time series monthly data for the investigation were collected ranging from 1995 to 2010. A total of 192 observations were used for data analysis. The date showed that a big difference existed between on-season and off-season of the number of foreign tourists in Kyeongju. In the forecast multiplicative seasonal ARIMA(1,1,0) $(4,0,0)_{12}$ model was found the most appropriate model. Results show that the number of tourists was 694 thousands in 2011, 715 thousands in 2012, 725 thousands in 2013, 738 thousands in 2014, and 884 thousands in 2015. It was suggested that the grasping of the Kyeongju forecast model was very important in respect of how experts in tourism development, policy makers or planners would establish marketing strategies to allocate services in Kyeongju as a tourist destination and provide tourism facilities efficiently.