• Title/Summary/Keyword: Seashell

검색결과 19건 처리시간 0.024초

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 Proceedings of KSEH.Minamata Forum
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Reaction of $H_2S$ with Sorbents of Waste Seashell

  • Kim, Young-Sik;Kim, Taek-Gyun;Lee, Yong-Du;Shim, Eon-Bong;Jung, Jong-Hyeon
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.378-380
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream, The sulphidation of waste seashells with H$_2$S was studied in a thermogravimetric analyzer at temperature between 600 and 800${\circ}$C . The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the H2S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • 한국환경보건학회지
    • /
    • 제36권2호
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

패각 폐기물을 이용한 황화반응 모델에 관한 연구 (A Study on the Model of Sulfidation Kinetics Using Seashell Wastes)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.395-401
    • /
    • 2004
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove $H_{2}S$. Unreacted core model ior desulfuriration rate prediction of sorbent was indicated. These were linear relationship between time and conversion. So co-current diffusion resistance was conducted reaction rate controlling step. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. Maximum desulfurization capacity was observed at 0.631 mm for lime, oyster and hard-shelled mussel. The kinetics of the sorption of $H_{2}S$ by CaO is sensitive to the reaction temperature and particle size at $800^{\circ}C$, and the reaction rate of oyster was faster than the calcined limestone at $700^{\circ}C$.

3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동 (Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite)

  • 현창진;권기성;서지석;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권1호
    • /
    • pp.90-97
    • /
    • 2024
  • 이 연구에서는 3D 프린팅용 HDCC를 활용하여 패류 껍질의 적층형 결합구조를 모사한 1방향 슬래브의 휨 성능을 평가하였다. 휨 성능 평가를 위하여 일반 콘크리트(RC) 및 HDCC로 일체 제작된 슬래브(HDCC)와 HDCC로 제작된 슬래브 내부에 PE-mesh를 삽입하여 층상형 구조를 모방한 슬래브(HDCC-M)를 제작하여 4점 재하 휨 실험을 수행하였다. 실험결과 HDCC-M 슬래브 실험체의 내력은 RC 및 HDCC 슬래브 실험체 대비 각각 1.7배 및 1.2배 높은 결과를 나타내었다. 또한, 항복 변위와 최대처짐량의 비율로 변위 연성비를 평가한 결과, HDCC 슬래브 실험체가 가장 우수한 값을 나타내었다. 이는 삽입된 PE-mesh로 인해 층을 분리하여 연성을 증가시키는 동시 mesh 체눈을 관통하는 각주형 HDCC가 로 내력손실을 방지하였기 때문이라고 판단된다.

합판용 접착제의 충전제로서 폐기 골분의 이용 (Utilization of Waste Bone Powders as Adhesive Fillers for Plywood)

  • 고재호;노정관
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.528-537
    • /
    • 2015
  • 폐기물의 재활용을 도모하기 위해 음식점이나 정육점에서 폐기되는 뼈(골분)를 합판용 접착제의 충전제로서 이용 가능성을 검토하였다. 현재 업계에서 합판의 제조에 사용되고 있는 3종의 접착제(UMF, UF 및 PF수지)에 대해 3종의 골분(소골분, 돼지골분 및 조개골분)을 첨가하여 제조한 라티에타파인 합판의 접착성능을 기존의 소맥분과 비교하였다. 3수지에서 모두 소맥분을 전부 소골분, 돼지골분 및 조개골분으로 각각 대체한 합판의 접착성능은 상태나 습윤 강도 및 목파율 모두 소맥분 첨가 합판보다 낮았다. 따라서 소맥분을 전혀 첨가하지 않고 골분으로 모두 대체하는 것은 곤란하였다. 그러나, 소맥분의 절반을 소골분과 돼지골분으로 각각 대체하여 제조한 합판의 성능은 소맥분을 사용한 합판과 거의 동등하거나 오히려 우수한 내수성능을 발휘하여 소맥분과 병용해서 사용하면 충분히 이용이 가능할 것으로 생각된다. 소맥분과 병용한 경우, 3종의 골분 중에는 조개골분을 첨가하여 제조한 합판 보다는 소골분과 돼지골분을 첨가한 합판의 성능이 우수하였으며, 소골분과 돼지골분 간에는 큰 차이가 없었다.

A Case Study of Personal and Creative Fashion Design Development: Swirls in Motion - a Goddess and Seashells -

  • Choi, Kyung-Hee
    • International Journal of Costume and Fashion
    • /
    • 제6권1호
    • /
    • pp.1-19
    • /
    • 2006
  • This case study is to embody the birth of a beautiful goddess out of seashells in a contemporary fashion design collection, on the basis of the mythology of The Birth of Venus. The main theme attempts to reinterpret the image of the goddess of love and beauty and express the organic vitality of seashells and oceanic feelings by swirls in motion. To accomplish this, three dimensional silhouette of layered forms of voluminous outer and fitted inner is applied to design ideas with spiral curves. The opposite texture of something sculptural and transparent versus smooth and shiny is used to express the layered structure of seashells with the delicacy of goddess. Neutral colours and different tones of pink appeal to oceanic feelings and feminine emotion in a modern way. Various techniques by the geometric simplicity of flat patterns and pleating with boning are also performed to express the vital movement of organism. Throughout the whole process of this case study, the conceptual idea of Swirls in Motion - a goddess and seashells is reinterpreted to a contemporary fashion by personal and creative design development process. In particular, it is evaluated by the process of primary researches, various design developments and experimentations to the main theme.

패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(I) -열중량분석기를 이용한 황화반응특성- (A Study on the $H_2S$ Removal with Utilization of Seashell Waste(I) -The Characteristics of Sulfided Reaction Using Thermal Gravimetric Analyzer-)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.45-49
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. According to TGA results, temperature had influenced on H$_2$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at 80$0^{\circ}C$. Desulfurization was related to calcination temperature. Considering temperature ranges of exhausted gas from hot gas gasification equipment were 400~80$0^{\circ}C$. Thus, desulfurization efficiency would be increased desulfurization temperature situation at highly. Experiments by TGA showed that particle size of sorbents had influenced on desulfurization capacity. Maximum desulfurization capacity was observed at 0.631 mm for oyster and clam. Rest of sorbents showed similar capacity within 0.171~0.335 mm particle size range. So, particle size would be considered. When would be used waste shells as IGCC sorbents. According to the results about desulfurization capacity by TGA, oyster had the best desulfurization capacity among limestone and waste shell. We would be identify to substituted oyster for existing sorbents

패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성 (A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor-)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.