• Title/Summary/Keyword: Seashell

Search Result 19, Processing Time 0.023 seconds

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Reaction of $H_2S$ with Sorbents of Waste Seashell

  • Kim, Young-Sik;Kim, Taek-Gyun;Lee, Yong-Du;Shim, Eon-Bong;Jung, Jong-Hyeon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.378-380
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream, The sulphidation of waste seashells with H$_2$S was studied in a thermogravimetric analyzer at temperature between 600 and 800${\circ}$C . The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the H2S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

A Study on the Model of Sulfidation Kinetics Using Seashell Wastes (패각 폐기물을 이용한 황화반응 모델에 관한 연구)

  • Kim Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.395-401
    • /
    • 2004
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove $H_{2}S$. Unreacted core model ior desulfuriration rate prediction of sorbent was indicated. These were linear relationship between time and conversion. So co-current diffusion resistance was conducted reaction rate controlling step. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. Maximum desulfurization capacity was observed at 0.631 mm for lime, oyster and hard-shelled mussel. The kinetics of the sorption of $H_{2}S$ by CaO is sensitive to the reaction temperature and particle size at $800^{\circ}C$, and the reaction rate of oyster was faster than the calcined limestone at $700^{\circ}C$.

Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite (3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동)

  • Chang-Jin Hyun;Ki-Seong Kwon;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • In this study, we employed Highly Ductile Cement Composite (HDCC) to evaluate the flexural performance of a RC slab that simulates the laminating structure of a seashell. To evaluate flexural performance, we produced conventional RC slab specimens, HDCC slab specimens, and HDCC-M slab specimens which biomimics a seashell's layered structure by inserting PE mesh inside the slab made of HDCC. A series of 4-point bending tests were conducted. Experimental results shows the flexural strength of the HDCC-M slab specimen was 1.7 times and 1.2 times higher than that of the RC and HDCC slab specimens, respectively. Furthermore, the ductility was evaluated using the ratio of yield deflection to maximum deflection, and it was confirmed that the HDCC slab test specimen exhibited the best ductility. This is most likely due to the fact that the inserted PE mesh separates the layers and increases ductility, while the HDCC passing through the mesh prevents the loss of load carrying capacity due to layer separation.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

A Case Study of Personal and Creative Fashion Design Development: Swirls in Motion - a Goddess and Seashells -

  • Choi, Kyung-Hee
    • International Journal of Costume and Fashion
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2006
  • This case study is to embody the birth of a beautiful goddess out of seashells in a contemporary fashion design collection, on the basis of the mythology of The Birth of Venus. The main theme attempts to reinterpret the image of the goddess of love and beauty and express the organic vitality of seashells and oceanic feelings by swirls in motion. To accomplish this, three dimensional silhouette of layered forms of voluminous outer and fitted inner is applied to design ideas with spiral curves. The opposite texture of something sculptural and transparent versus smooth and shiny is used to express the layered structure of seashells with the delicacy of goddess. Neutral colours and different tones of pink appeal to oceanic feelings and feminine emotion in a modern way. Various techniques by the geometric simplicity of flat patterns and pleating with boning are also performed to express the vital movement of organism. Throughout the whole process of this case study, the conceptual idea of Swirls in Motion - a goddess and seashells is reinterpreted to a contemporary fashion by personal and creative design development process. In particular, it is evaluated by the process of primary researches, various design developments and experimentations to the main theme.

A Study on the $H_2S$ Removal with Utilization of Seashell Waste(I) -The Characteristics of Sulfided Reaction Using Thermal Gravimetric Analyzer- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(I) -열중량분석기를 이용한 황화반응특성-)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. According to TGA results, temperature had influenced on H$_2$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at 80$0^{\circ}C$. Desulfurization was related to calcination temperature. Considering temperature ranges of exhausted gas from hot gas gasification equipment were 400~80$0^{\circ}C$. Thus, desulfurization efficiency would be increased desulfurization temperature situation at highly. Experiments by TGA showed that particle size of sorbents had influenced on desulfurization capacity. Maximum desulfurization capacity was observed at 0.631 mm for oyster and clam. Rest of sorbents showed similar capacity within 0.171~0.335 mm particle size range. So, particle size would be considered. When would be used waste shells as IGCC sorbents. According to the results about desulfurization capacity by TGA, oyster had the best desulfurization capacity among limestone and waste shell. We would be identify to substituted oyster for existing sorbents

A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.