• Title/Summary/Keyword: Search robot

Search Result 242, Processing Time 0.028 seconds

A study on path planning and avoidance of obstacle for mobile robot by using genetic algorithm (유전알고리즘을 이용한 이동로봇의 경로계획 및 충돌회피에 관한 연구)

  • 김진수;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1193-1196
    • /
    • 1996
  • Genetic algorithm(GA) is useful to find optimal solution without any special mathematical modeling. This study presents to search optimal path of Autonomous Mobile Robot(AMR) by using GA without encoding and decoding procedure. Therefore, this paper shows that the proposed algorithm using GA can reduce the computation time to search the optimal path.

  • PDF

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Sliding Mode Control for Robot Manipulator Usin Evolution Strategy (Evolution Strategy를 이용한 로봇 매니퓰레이터의 슬라이딩 모드 제어)

  • 김현식;박진현;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.379-382
    • /
    • 1996
  • Evolution Strategy is used as an effective search algorithm in optimization problems and Sliding Mode Control is well known as a robust control algorithm. In this paper, we propose a Sliding Mode Control Method for robot manipulator using Evolution Strategy. Evolution Strategy is used to estimate Sliding Mode Control Parameters such as sliding surface gradient, continuous function boundary layer, unknown plant parameters and switching gain. Experimental results show the proposed control scheme has accurate and robust performances with effective search ability.

  • PDF

Performance Evaluation of Search Robot Prototypes for Special Disaster Areas (특수재난지역 정찰로봇 시제품의 성능평가연구)

  • Kwark, Jihyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.109-118
    • /
    • 2015
  • Recently, three kinds of search robot prototypes were developed to assume the role of fire fighters for search and rescue missions in special disaster areas with high heat, smoke, toxic gases, or radioactivity. To accomplish search missions, these robots should be able to endure heat, overcome various obstacles, suppress fires, and see through dense smoke. This study investigated the heat resistance, practicality, and fire fighting capacity of these robots. The results show that the small and middle-sized robots were resistant to surrounding temperatures of $100{\sim}200^{\circ}C$, and the fire-fighter-riding robot could endure up to $500^{\circ}C$ for half an hour. The fire-fighter-riding robot showed excellent extinguishing performance on an A-10 class fire model, which was extinguished within 3 min. The robots also showed various capacities for overcoming obstacles and are expected to play an active role in various special disaster areas.

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Function derived through analysis of educational robot user (교육용 로봇 수요자 분석을 통한 기능 도출)

  • Kim, Myung-Seuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.667-670
    • /
    • 2009
  • The users' needs are expanded because of developing of educational robot market. However, the technology development doesn't fully adopt customer needs. In general, the most products are followed not user needs but technology trajectory. In this paper, we try to define the educational robot functions from analyzing usage propensity and customer needs with Kano model. According to results, there are key functions based on customer needs such as remote student control, Internet search, educational contents search and study planner. If the four key functions are offered, user's positive attitude to robot will be increased.

  • PDF

The Effects of Robot-Assisted Gait Training for the Patient With Post Stroke: A Meta-Analysis (뇌졸중 환자에게 적용한 로봇보행 재활훈련의 효과: 메타분석)

  • Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.30-40
    • /
    • 2015
  • Robot-assisted rehabilitation therapy has been used to increase physical function in post-stroke patients. The aim of this meta-analysis was to identify whether robot-assisted gait training can improve patients' functional abilities. A comprehensive search was performed of PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Physiotherapy Evidence Database (PEDro), Academic Search Premier (ASP), ScienceDirect, Korean Studies Information Service System (KISS), Research Information Sharing Service (RISS), Korea National Library, and the Korean Medical Database up to April, 2014. Fifteen eligible studies researched the effects of robot-assisted gait training to a control group. All outcome measures were classified by International Classification of Functioning, Disability, and Health (ICF) domains (body function and structures, activity, and participation) and were pooled for calculating the effect size. The overall effect size of the robot-assisted gait training was .356 [95% confidence interval (CI): .186~.526]. When the effect was compared by the type of electromechanical robot, Gait Trainer (GT) (.471, 95% CI: .320~.621) showed more effective than Lokomat (.169, 95% CI: .063~.275). In addition, acute stroke patients showed more improvement than others. Although robot-assisted gait training may improve function, but there is no scientific evidence about the appropriate treatment time for one session or the appropriate duration of treatment. Additional researchers are needed to include more well-designed trials in order to resolve these uncertainties.

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF

Development of a Navigation Control Algorithm for Mobile Robots Using D* Search and Fuzzy Algorithm (D* 서치와 퍼지 알고리즘을 이용한 모바일 로봇의 충돌회피 주행제어 알고리즘 설계)

  • Jung, Yun-Ha;Park, Hyo-Woon;Lee, Sang-Jin;Won, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, we present a navigation control algorithm for mobile robots that move in environments having static and moving obstacles. The algorithm includes a global and a local path-planning algorithm that uses $D^*$ search algorithm, a fuzzy logic for determining the immediate level of danger due to collision, and a fuzzy logic for evaluating the required wheel velocities of the mobile robot. To apply the $D^*$ search algorithm, the two-dimensional space that the robot moves in is decomposed into small rectangular cells. The algorithm is verified by performing simulations using the Python programming language as well as by using the dynamic equations for a two-wheeled mobile robot. The simulation results show that the algorithm can be used to move the robot successfully to reach the goal position, while avoiding moving and unknown static obstacles.