• Title/Summary/Keyword: Search algorithms

Search Result 1,328, Processing Time 0.028 seconds

A Similarity Valuating System using The Pattern Matching (패턴매칭을 이용한 유사도 비교 분석)

  • Ko, Bang-Won;Kim, Young-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.185-192
    • /
    • 2010
  • This research suggests that valuate similarities by using the matches of patterns which is appeared on different two documents. Statistical ways such as fingerprint method are mainly used for evaluate similarities of existing documents. However, this method has a problem of accuracy for the high similarity which is occurred when many similar words are appeared from two irrelevant documents. These issues are caused by simple comparing of statistical parameters of two documents. But the method using patterns suggested on this research solved those problems because it judges similarity by searching same patterns. This method has a defect, however, that takes long time to search patterns, but this research introduce the algorithms complement this defect.

Design and Implementation of an Optimal 3D Flight Path Recommendation System for Unmanned Aerial Vehicles (무인항공기를 위한 최적의 3차원 비행경로 추천 시스템 설계 및 구현)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1346-1357
    • /
    • 2021
  • The drone technology, which is receiving a lot of attention due to the 4th industrial revolution, requires an Unmanned Aerial Vehicles'(UAVs) flight path search algorithm for automatic operation and driver assistance. Various studies related to flight path prediction and recommendation algorithms are being actively conducted, and many studies using the A-Star algorithm are typically performed. In this paper, we propose an Optimal 3D Flight Path Recommendation System for unmanned aerial vehicles. The proposed system was implemented and simulated in Unity 3D, and by indicating the meaning of the route using three different colors, such as planned route, the recommended route, and the current route were compared each other. And obstacle response experiments were conducted to cope with bad weather. It is expected that the proposed system will provide an improved user experience compared to the existing system through accurate and real-time adaptive path prediction in a 3D mixed reality environment.

Algorithmic approach to the lymphatic leak after vascular reconstruction: a systematic review

  • Nicksic, Peter John;Condit, Kevin Michael;Nayar, Harry Siva;Michelotti, Brett Foster
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.404-409
    • /
    • 2021
  • Background To date, there are no consensus guidelines for management of lymphatic leak in groin vascular reconstruction patients. The goal of this study is to review the relevant literature to determine alternatives for treatment and to design an evidence-based algorithm to minimize cost and morbidity and maximize efficacy. Methods A systematic review of the literature was conducted per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Two independent reviewers applied agreed-upon inclusion and exclusion criteria to eligible records. Studies that included patients who underwent groin dissection for oncologic diagnoses and level 5 data were excluded. Interventions were then categorized by efficacy using predetermined criteria. Results Our search yielded 333 records, of which eight studies were included. In four studies, the success of lymphatic ligation ranged from 75% to 100%, with average days to resolution ranging from 0 to 9. Conservative management in the form of elevation, compression, and bedrest may prolong time to resolution of lymphatic leak (14-24 days) and therefore cost. Conclusions The majority of patients should be offered early operative intervention in the form of lymphatic ligation with or without a primary muscle flap. If the patient is not an operative candidate, a trial of conservative management should be attempted before other nonsurgical interventions.

A Study of Adapted Genetic Algorithm for Circuit Partitioning (회로 분할을 위한 어댑티드 유전자 알고리즘 연구)

  • Song, Ho-Jeong;Kim, Hyun-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.164-170
    • /
    • 2021
  • In VLSI design, partitioning is a task of clustering objects into groups so that a given objective circuit is optimized. It is used at the layout level to find strongly connected components that can be placed together in order to minimize the layout area and propagation delay. The most popular algorithms for partitioning include the Kernighan-Lin algorithm, Fiduccia-Mattheyses heuristic and simulated annealing. In this paper, we propose a adapted genetic algorithm searching solution space for the circuit partitioning problem, and then compare it with simulated annealing and genetic algorithm by analyzing the results of implementation. As a result, it was found that an adaptive genetic algorithm approaches the optimal solution more effectively than the simulated annealing and genetic algorithm.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

Malaria Epidemic Prediction Model by Using Twitter Data and Precipitation Volume in Nigeria

  • Nduwayezu, Maurice;Satyabrata, Aicha;Han, Suk Young;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.588-600
    • /
    • 2019
  • Each year Malaria affects over 200 million people worldwide. Particularly, African continent is highly hit by this disease. According to many researches, this continent is ideal for Anopheles mosquitoes which transmit Malaria parasites to thrive. Rainfall volume is one of the major factor favoring the development of these Anopheles in the tropical Sub-Sahara Africa (SSA). However, the surveillance, monitoring and reporting of this epidemic is still poor and bureaucratic only. In our paper, we proposed a method to fast monitor and report Malaria instances by using Social Network Systems (SNS) and precipitation volume in Nigeria. We used Twitter search Application Programming Interface (API) to live-stream Twitter messages mentioning Malaria, preprocessed those Tweets and classified them into Malaria cases in Nigeria by using Support Vector Machine (SVM) classification algorithm and compared those Malaria cases with average precipitation volume. The comparison yielded a correlation of 0.75 between Malaria cases recorded by using Twitter and average precipitations in Nigeria. To ensure the certainty of our classification algorithm, we used an oversampling technique and eliminated the imbalance in our training Tweets.

The Use of Artificial Intelligence in Screening and Diagnosis of Autism Spectrum Disorder: A Literature Review

  • Song, Da-Yea;Kim, So Yoon;Bong, Guiyoung;Kim, Jong Myeong;Yoo, Hee Jeong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.30 no.4
    • /
    • pp.145-152
    • /
    • 2019
  • Objectives: The detection of autism spectrum disorder (ASD) is based on behavioral observations. To build a more objective datadriven method for screening and diagnosing ASD, many studies have attempted to incorporate artificial intelligence (AI) technologies. Therefore, the purpose of this literature review is to summarize the studies that used AI in the assessment process and examine whether other behavioral data could potentially be used to distinguish ASD characteristics. Methods: Based on our search and exclusion criteria, we reviewed 13 studies. Results: To improve the accuracy of outcomes, AI algorithms have been used to identify items in assessment instruments that are most predictive of ASD. Creating a smaller subset and therefore reducing the lengthy evaluation process, studies have tested the efficiency of identifying individuals with ASD from those without. Other studies have examined the feasibility of using other behavioral observational features as potential supportive data. Conclusion: While previous studies have shown high accuracy, sensitivity, and specificity in classifying ASD and non-ASD individuals, there remain many challenges regarding feasibility in the real-world that need to be resolved before AI methods can be fully integrated into the healthcare system as clinical decision support systems.

A Study on Learning Mathematics for Machine Learning

  • Jun, Sang Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.257-263
    • /
    • 2019
  • This paper is a study on mathematical aspects that can be basic for understanding and applying the contents of machine learning. If you are familiar with mathematics in the field of computer science, you can create algorithms that can diversify researches and implement them faster, so you can implement many real-life ideas. There is no curriculum standard for mathematics in the field of machine learning, and there are many absolutely lacking mathematical contents that are taught in the curriculum presented at existing universities. Machine learning now includes speech recognition systems, search engines, automatic driving systems, process automation, object recognition, and more. Many applications that you want to implement combine a large amount of data with many variables into the components that the programmer generates. In this course, the mathematical areas required for computer engineer (CS) practitioners and computer engineering educators have become diverse and complex. It is important to analyze the mathematical content required by engineers and educators and the mathematics required in the field. This paper attempts to present an effective range design for the essential processes from the basic education content to the deepening education content for the development of many researches.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.