• Title/Summary/Keyword: Seamounts

Search Result 36, Processing Time 0.023 seconds

Structural Implications of Gravity Anomalies around Dok Island and its Surrounding Seamounts in the East Sea (독도 및 그 주변 해산 중력 이상의 지구조적 해석)

  • 김원균;김창환;박찬홍;한현철;권문상;민경덕;김백수;최영섭
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.537-545
    • /
    • 2000
  • Shipborne gravity data are analyzed to investigate crustal structure under Dok Island and its surrounding seamounts located in border of Ulleung Basin and Oki Bank in the East Sea. Relatively low free-air gravity anomaly compared with the volume of seamounts may be explainable by isostatic compensation. From 1 st to 3rd Dokdo Seamounts, the decrease of free-air and Bouguer gravity anomalies implies the different degree of isostatic compensation, crustal thickness or/and density contrast. 3-D gravity modelling shows that seamounts have the mirror roots for regional Airy isostatic compensation, and from Ulleung Basin to Oki Bank, Moho discontinuity deepens and the density of crust is decreases. The results infer that study area is transitional zone from thin oceanic to thick continental crust. The depth of Moho discontinuity is about 15∼16 km, which may be interpreted as an uplifting of Mantle to shallow depth comparing with other borders of the Ulleung Basin.

  • PDF

Total Field Magnetic Analysis of Nine Seamounts Northwest of the Marshall Islands, Western Pacific

  • Lee, Tae-Gook;Lee, Sang-Mook;Moon, Jae-Woon;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • Total magnetic field and high-resolution bathymetric data were collected over nine seamounts to the northwest of the Marshall Islands in the western Pacific. Magnetic parameters including inclination and declination were calculated from the magnetic anomalies using inversion algorithm of Plouff (1976), and a corresponding paleomagnetic pole was determined with the magnetic parameters. The paleomagnetic poles determined in this study were compared with the previous apparent polar wander path (APWP) of Pacific plate. Most seamounts of the study area have normal polarity. The study reveals that all nine seamounts in the study area formed in the southern hemisphere during the Cretaceous based on their comparison with the APWP of Pacific plate. The ages estimated from paleomagnetic poles can be divided by age into three groups: the oldest (OSM1 and OSM3), middle age (OSM2, OSM4, and 6-2), and the youngest (OSM5-1, 5-2, 5-3, and 6-1). The fermer two groups and the latter seem to be coincident with two distinct pulses of Cretaceous volcanic activity (115-90 Ma and 83-65 Ma). As a whole the seamounts at southwest of the study area are older than at those northeast.

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

Paleomagnetism of Three Seamounts Northwest of the Marshall Islands from Magnetic Inversion (자기이상 역산에 의한 마샬제도 북서쪽 세 해저산의 고지자기 해석)

  • Lee, Tae-Gook;Moon, Jai-Woon;Ko, Young-Tak;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.559-565
    • /
    • 2004
  • Total magnetic field measurements were performed to study paleomagnetism of three seamounts (OSM7, OSM8-1, and OSM8-2) to the northwest of the Marshall Islands in the western Pacific. The study area is located at the Ogasawara Fracture Zone which is a boundary between the Pigafetta and East Mariana basins. The magnetic parameters and paleopoles of three seamounts were derived from inversion of the measured magnetic field. The goodness-of-fit ratio of OSM7 is too low to be included to the estimation of parameters. The complex magnetic anomalies of center, scarcity of flank rift zones and steep slope at OSM7 suggest that the multiple intrusions of magma converge into the center of volcanic edifice. Inclination calculated from the magnetic anomalies of OSM8-1 and OSM8-2 is $-41.2^{\circ}$, and the paleolatitude calculated from the inclination is $23.6^{\circ}S$. The corresponding paleopoles for OSM8-1 and OSM8-2 are $(24^{\circ}42'W,\;48^{\circ}54'N)\;and\;(18^{\circ}18'W,\;48^{\circ}30'N)$, respectively. In comparison with the apparent polar wander path (APWP) of the Pacific plate, the paleopoles are close to 129-Ma pole. The paleopoles and paleolatitudes of OSM8-1 and OSM8-2 suggest that they were formed at similar time and location. The seamounts have drifted northward about $41^{\circ}$ from the paleolatitude to present latitude of seamounts.

Three-dimensional Flexure Modeling by Seamount Loading in the Western Pacific: Infinite Plate Model (서태평양에 위치한 해저산들의 3-D flexure 모델링 : 무한지판 모델)

  • Lee, Tae-Gook;Moon, Jai-Woon;Chi, Sang-Bum;Park, Cheong-Kee;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.35-44
    • /
    • 2005
  • The bathymetric and gravity data were obtained in 2001 and 2003 during a survey of seamounts in the northwest of the Marshall Islands, western Pacific. The study areas are located in the Pigafetta Basin which is the oldest part of the Pacific plate and in the Ogasawara Fracture Zone which formed from the spreading ridge between the Izanagi and Pacific plates in the Jurassic. The densities of seamounts and the elastic thickness values of the lithosphere are calculated by using three-dimensional flexure modeling considering the constant sediment layer in the infinite plate model. Very low elastic thickness values (5km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of lithosphere by widespread volcanisms, whereas the elastic thickness values (15km), relatively old seamounts, and young lithosphere of the west study area are suitable for a simple cooling plate model of $300-600^{\circ}C$ isotherm. The gravity residuals of OSM6-1 and OSM6-2 suggest the possibility of different load density or elastic thickness. Relatively older OSM6-2 formed on the younger lithosphere with relatively thin elastic thickness, while younger OSM6-1 on the older lithosphere with relatively thick elastic thickness.

A Study on the Structure and Origin of the Dokdo and it's Surroundings in the East Sea (Japan Sea) Using Magnetic Anomalies (지자기이상을 이용한 동해 독도 및 독도주변의 구조와 성인에 관한 고찰)

  • Kim, Chang-Hwan;Park, Chan-Hong;Min, Kyung-Duck;Han, Hyun-Chul;Kwon, Moon-Sang;Shim, Jae-Seol;Choi, Sung-Ho;Oh, Soon-Bock
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.491-500
    • /
    • 2002
  • Magnetic anomalies in the Dokdo and it's surroundings were investigated with respect to structure and origin of the Dokdo and surrounding seamounts. After normal and diurnal correction of measured magnetic data, crossover correction was applied to reduce errors between sets of magnetic anomalies. The errors from crossover operation result in decrease of about 51%, from 62.2 nT to 30.1 nT in standard deviation. Reduction-to-the-pole, second vertical derivative and analytic signal processing were applied to explore magnetic anomaly signatures in detail. Magnetic anomalies are most complicated in the 1st-Dok seamount, show SWW-NEE linear pattern in the 2nd-Dok seamount and lower to the 3rd-Dok seamount. Different magnetic anomaly patterns in three seamounts imply that three volcanic seamounts were formed at different times and are composed of rocks that were produced in different conditions. It seems that the 3rd-Dok seamount was first to form and followed by the 1st-Dok seamount. The complicated magnetic and second vertical derivative anomaly patterns in the 1st-Dok seamount may be due to subsidiary cones around crater or the presence of intruded magma bodies below sea surface and the Dokdo is probably a marginal subsidiary part of crater.

The Study of Formation for Dokdo Seamounts at the Northeastern Part of the Ulleung Basin Using Gravity and Magnetic Data (중력 및 자력자료 분석에 의한 울릉분지 북동부 독도 및 주변 해산들의 형성 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong;Ko, Young-Tak;Jung, Eui-Young;Kwak, Jun-Young;Yoo, Sang-Hoon;Min, Kyung-Duck
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.153-170
    • /
    • 2007
  • Loading time and loading environment of the Dokdo seamounts were studied from flexure model and VGP(Virtual Geomagnetic Pole) determined by gravity and magnetic data. In spite of their similarity in size. a large difference about 50 mGal between gravity anomaly peaks of Dokdo and the Isabu Tablemount suggests different compensation degrees. Flexural modeling results show that the flexural rigidity(effective elastic thickness) of lithosphere for Dokdo is stronger(thicker) than that for the Isabu Tablemount. Also, it implies that the age of lithosphere at the time of loading of the Isabu Tablemount may be younger than that of Dokdo. Magnetic anomalies occur complicated over the Dokdo seamounts. Paleomagnetism was studied from VGP estimated by the least square and the seminorm magnetization methods with 1500 m upward continued magnetic anomalies. Age dating of Dokdo from previous study, flexural modeling, VGP, and geomagnetic polarity time scale suggest that after the cease of spreading in the Ulleung Basin, the Isabu Tablemount was formed first in normal polarity interval and followed by Dokdo. Also, they indicate that the fist large eruption of Dokdo was in normal polarity interval and the second large eruption in reversed polarity interval. The Simheungtaek Tablemount was formed in normal polarity interval between the formations of the Isabu Tablemount and Dokdo. These loading times for the Dokdo seamounts show a good coherence with the compressive stress period after the end of the opening of the East Sea. The Dokdo seamounts probably was caused by volcanism associated with the compressive stress.

A Geophysical Study of a Deep sea basin southeast of the Hawaiian Island: Gravity, Magnetic, and Seismic Profiling (Hawaii 동남부 심해저 분지에 대한 지구물리학적 연구 : 중력, 자력 및 탄성파 탐사)

  • 서만철;박찬홍
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • A multi-disciplinary geophysical study including gravity, magnetic, and seismic reflection profiling was carried out in the area between the Clarion fracture zone and the Clippertone fracture zone o the northeastern equatorial Pacific basin. There are small free-air gravity anomalies of less than 20 mgal over seamounts and the east-west trending abyssal hills. The negative residual gravity anomalies over seamounts may indicate the existence of low density seamount roots compared to surrounding oceanic crust. Non-existence of magnetic lineations and the magnetic anomalies of small smplitude with no polarity change in the east-west direction support that the study area belongs to the Cretaceous magnetic quite zone. Positive magnetic anomalies over seamounts offset 100 km in the east-west direction in the southern part of the study area suggest a possibility of left-lateral movement of those seamounts along unknown fractures. The sedimentary section in the study area can be divided into three units (Unit I, unit IIA, and Unit IIB) n the basis of reflection characteristics. the total thickness of sedimentary section varies from 200 to 400 meters and the sedimentary section is thicker in the southern area of rough topography near the seamount belt than in the northern flat area. Manganese nodules are abundant in the southern part of the study area where the ridges are developed and the Unit I layer is thicker than 100 meters.

  • PDF

Acoustic Characterization of Three Seamounts Located in the Northwest of Marshall Islands, Western Pacific (서태평양 마샬제도 북서쪽에 위치한 세 해저산에 대한 음향상 연구)

  • Lee, Tae-Gook;Lee, Kie-Hwa;Moon, Jai-Woon;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Sang-Mook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.193-206
    • /
    • 2004
  • Geophysical data including chirp (3 7 kHz) subbottom profile and detailed bathymetry were obtained over three seamounts in the Ogasawara Fracture Zone (OFZ) of the western Pacific, as a part of manganese crust survey onboard R/V Onnuri in 2003. The OFZ is a 150-km-wide, 600-km-long rift zone, which separates the East Mariana and Pigafetta Basin. The OFZ is unique in that it includes many seamounts (e.g., Magellan Seamounts andseamounts on the Dutton Ridge). The sub-seafloor acoustic echoes obtained near the OFZ were classified into following types on the basis of their characteristics: types I-1(pelagic sediment with parallel or subparallel reflectors), I-2 (pelagic sediment with no internal reflectors), and III-1 (reef build-up complex) on summit; types II-1 and III-2 (basement outcrop) on flank rift zone and upper slope, respectively; type III-3 (slump) on the lower slope and embayment between the flank rift zones; types II-2 (debrite) on the base of slope and basin floor; and types II-3 (turbidite or pelagic sediment) and II-4 (turbidite) on the basin floor. The mass-wasting that produced the complex of type II-2 debrite and III-3 slump on the lower slope and basin may have been caused by (1) strong tensional stress in the OFZ which may cause the numerous fissures or basement faults and (2) complex of the faults on the summit and steep upper slope. The variations in the echo type of pelagic sediment in the summit of seamounts may be related with the changes in the depositional and/or erosional environments. Type I-2 pelagic sediment, which is characterized by a thin and intermittent coverage, was probably deposited at a sheltered area when the current was strong, whereas type I-1 pelagic deposit occurred during a stage of progressive sedimentation.

  • PDF