• Title/Summary/Keyword: Sealing surface

Search Result 242, Processing Time 0.034 seconds

A Study on the Enhancement of Durability for the Power Steering Oil Seal of Automotive (자동차 파워스트어링 오일씰 내구성 향상에 관한 연구)

  • Choi, Hyun-Jin;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • This study aimed to enhance the durability by distributing the stress concentration at the contact and increasing the mechanical characteristics, as well as by changing the surface shape for LIP in the low-pressure seal among oil seals installed to the power steering of automotive. Accordingly, results were derived from comparisons and reviews with oil seals under the existing mass production by carrying out the performance tests after designs and productions are done with the addition of embo shapes on the surface of LIP in the low-pressure seal. As a result of this study, it has been identified that the durability of oil seals with the addition of embo shapes was enhanced with higher radial force and less variation in the internal diameter for the LIP. In addition, it was seen that the sealing ability for those oil seals is superior to the existing oil seals as their rotational torque values are less than those of the existing oil seals.

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

Tribological Wear Behavior of PTFE Impregnated with Cu Nano Particles (구리 나노 입자가 함침된 PTFE의 윤활 마모 거동)

  • Kim, S.Y.;Kim, E.B.;Q., Yoo;Ju, C.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.50-55
    • /
    • 2010
  • In order to investigate tribological effects of nano copper particles impregnated(CuN) on surface polytetrafluoroethylene(PTFE) on sealing wear and an experimental study was carried out to determine the wear behavior of copper nano-particles impregnation two kind thickness in super critical $CO_2$ liquid. Experimental results showed that the friction coefficients of CuN PTFE at the low sliding speed(0.44m/s) and the oil temperature ($60^{\circ}C$) were higher than that of virgin PTFE. And a thin nano copper particles impreganated thickness was formed on the surface in the PTFE and the specimen with this treatment has much better friction properties than the original one. Fortunately, at the high load(80 N) and the oil temperature, the friction coefficient of CuN PTFE was lower than that of virgin PTFE. This evidenced the load carrying capacity of CuN PTFE was much better than that of virgin PTFE under the high load condition(80 N) specially. Therefore, it can be concluded that the friction coefficient variation of CuN PTFE is very small but its wear rate decreases greatly with increase in sliding speed.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • Lee, Min-Young;Kim, Byung-Tak
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

The Effect of Polymer Thin Film for Sealing Buffer on the Characteristics of OLEO Device (OLED 소자의 특성에 미치는 밀봉 버퍼용 고분자박막의 영향)

  • Lee, Bong-Sub;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.102-108
    • /
    • 2008
  • In this paper, the LiF and polymer thin film as passivation layer have been evaporated on green OLED devices. HDPE, polyacenaphthylene, polytetrafluoroethylene, poly(2,6-dimethyl-1,4-pheneylene oxide), poly sulfone and poly(dimer-acid-co-alkyl poly-amine) have been used as polymer materials. The optical transmittance of evaporated polymer thin film was very good as an above 90% in visible range. The morphology of polymer thin film was measured by AFM. As a result of the measurement average roughness($R_a$) value of the polysulfone was very low as 2.2 nm. The green OLED devices with a structure of ITO/HIL/HTL/EML/Buffer/Al in series of various passivation films were fabricated and analyzed. It was observed that an OLED device with LiF as first passivation film has shown the good electrical and optical property, and all kind of polymer films did not influence on the I-V-L characteristics and the life time of OLED devices. Therefore, we found that polymer layer played a key role as a buffer layer between the inorganic passivation layers to relieve the stress of the inorganic layers.

Performance of Polymer Suspension Insulator with Shed Profile (갓 형상에 따른 폴리머 현수애자의 열화특성)

  • Cho, H.G.;Lee, U.Y.;Kang, S.H.;Lim, K.J.;Yeo, H.G.;Ji, W.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.539-542
    • /
    • 2003
  • Recently, the polymer insulators which are being used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination which lead to the well known phenomenon of dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the aging property of polymer insulator with shed shape(regular, alternative type) is analyzed through numerical analysis, CEA(canadian electricity association) tracking wheel test and IEC 61109 Annex C.

  • PDF

An Experimental Study on Oil Separation Characteristics of $CO_2$/P AG Oil Mixture in an Oil Separator

  • Kang, Byung-Ha;Kim, Kyung-Jae;Lee, Sung-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.88-93
    • /
    • 2009
  • Lubricant oil is needed in air conditioning and refrigeration system because the compressor requires oil to prevent surface to surface contact between its moving parts, to remove heat, to provide sealing, to keep out contaminants, to prevent corrosion, and to dispose of debris created by wear. Thus, the oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics have been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$ at 50 bar and $70^{\circ}C$ to $90^{\circ}C$ at 80 bar. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Development of Piston Friction Force Measurement System (피스톤계 마찰 측정 장치 개발)

  • Ha, Gyeong-Pyo;Kim, Jung-Su;Jo, Myeong-Rae;O, Dae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1608-1614
    • /
    • 2002
  • This Paper presents a novel piston friction force measurement system that has characteristics of relieving the Pressure force acting on the upper surface of the liner; the system uses general rubber O-rings for combustion chamber sealing, and does not need special changes to the piston top land. The lower supporter of the floating liner increases stiffness in liner axial direction, and results in the increase of natural frequency. The upper supporter has multi-layer structure designed fer low axial stiffness and high radial stiffness. With the use of the present system, the effects of variation in clearance and piston ring tension were studied.

An acoustic evaluation of bottom-ash light-weigh concrete panel using small-scale Panel (축소시편을 이용한 Bottom ash 경량콘크리트패널의 차음성능평가)

  • Chung, J.Y.;Im, J.B.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.951-955
    • /
    • 2007
  • Recently, drywall's demand is increasing by interest about spread of remodeling house and separated wall structure. This research evaluated panel's SRI and found out panel properties using material of small size. Conclusion of this research is as following. First, we confirmed the effectiveness of small-scale material. Measuring results appeared equally about 400 ${\sim}$ 500 Hz that is fc frequency. Second,, it is no big difference in SRI that use CRC or magnesium board that is used for protection of panel surface. Third, it is compared SRI by used junction to make wall that become disjointing assembly. By the result, sealed wall secures resemblant SRI performance almost with normal wall. Therefore, using joint materials and sealing junction became wall that is detached with high SRI.

  • PDF