• Title/Summary/Keyword: Sealing Materials

검색결과 328건 처리시간 0.029초

Test Methods of Sealing Material for Plastic Liquid Crystal Display Cells

  • Hsiao, C.C.;Liao, Y.C.;Chang, K.H.;Sha, Y.A.;Su, P.J.;Hsieh, C.H.;Shiu, J.W.;Fuh, S.Y.;Lin, C.Y.;Cheng, W.Y.;Yang, J.C.;Lo, K.L.;Lee, D.W.;Lee, K.C.;Chang, Y.P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.830-833
    • /
    • 2006
  • In this work, we provided a novel test method to verify the sealing materials for flexible LCD cell. The ultraviolet type curing sealing material with low process temperature was suitable for LCD cell assembly. We also proposed the sealing materials which passed 13200 times bending test within 20 mm curvature.

  • PDF

NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어 (Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging)

  • 김치헌;허유진;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.57-61
    • /
    • 2016
  • 대용량 전력저장용 황화나트륨 기반의 전지를 개발함에 있어서 베타 알루미나 고체 전해질 튜브와 알파 알루미나 셀 캡 간의 물리적 접합을 위해서는 세라믹-세라믹 접합용 씰링 글라스 후막 페이스트가 필요하다. 본고에서는 글라스 프릿 분말의 입도, 열처리 조건이 씰링 글라스의 열처리 후 미세구조 특히 기공율과 그 분포에 미치는 영향을 연구하였다. 씰링 글라스 분말의 입자가 클수록 열처리 후의 글라스의 미세 조직상에서의 기공율 및 기공의 수가 감소하였으며, 열처리 온도가 증가 할수록 기공의 수가 감소하는 반면 기공의 크기는 증가함을 확인하였다. 이로써 글라스 씰란트의 제조에 있어서, 글라스 페이스트용 글라스 프릿 분말의 입자 크기와 씰링 열처리 온도의 적절한 선정에 의해 글라스 씰링부의 미세구조에서 기공율과 기공의 분포 및 기공의 수를 제어할 수 있음을 보여주었다.

접촉면 형상에 따른 O-링의 접촉거동해석에 관한 연구 (On the Contact Behavior Analysis of the O-ring Depending on the Contact Surface Profiles)

  • 김청균
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, the contact stress and strain distributions in elastomer O-ring seals have been analyzed using a non-linear finite element method. The stress behavior of PTFE materials is assumed as Odgen model because the sealing clearance between the flange and the surface of the O-ring is not small and the sealing pressure of working fluids covers from the atmospheric pressure to high pressure of 15MPa. The contact normal force and stress in wavy O-rings in which is developed for this analysis are uniformly distributed along the flange and the wall of the rectangular groove. And the normal sealing forces are also kept high compared to other contact sealing models such as the conventional O-ring and X-ring, Thus, the FEM computed results indicate that the sealing characteristic of wavy O-rings is food compared with other contact seals.

The Reliability Test of Sealing Glass Frit in AC PDP

  • Jeon, Young-Hwan;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1538-1541
    • /
    • 2005
  • For reliability evaluation of AC-PDP, one of the most important factor is sealing property. In this paper, the reliability evaluation test method of the commercialized sealing glass frit in AC-PDP was studied. 6 inch AC-PDP panels were tested for evaluation of sealing glass frit by vibration shock test, thermal shock test, non -destructive X-ray inspection, residual stress inspection and residual gas detection. These test methods are proposed as a standard for testing the reliability of sealing glass frit. The main failure mode of sealing glass frit in AC-PDP seems to be the crack propagation from thermal cycling rather than mechanical factor.

  • PDF

P2O5-ZnO-SiO2-R2O Glass Frit Materials for Hermetic Sealing of Dye-Sensitized Solar Cells

  • Lee, Hansol;Lee, Choon Yeob;Hwang, Jae Kwun;Chung, Woon Jin
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.400-405
    • /
    • 2017
  • $P_2O_5-ZnO-SiO_2-R_2O$ glasses were synthesized as a sealing material for large scale dye-sensitized solar cells (DSSC). Compositional effects of $P_2O_5$ and ZnO were examined by varying their contents. Their viscosity and glass stability at sintering temperatures of less than $550^{\circ}C$ were examined by flow button test. Glass transition temperature and structural change upon compositional change were investigated. Chemical stability against electrolyte was also examined by immersing the glasses in the electrolyte for 72 h at $85^{\circ}C$.

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

염료감응 태양전지 모듈의 장기안정성 향상을 위한 실링기술 연구 (The Effect of Sealing Technology on the Long-Term Stability of Dye-Sensitized Solar Cell Module)

  • 이광수;고민재
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.155-158
    • /
    • 2016
  • Long-term stability of dye-sensitized solar cell (DSSC) module is critical for the commercialization. We investigated the effect of sealing technology on the long-term stability of the $10cm{\times}11cm$ sized DSSC modules. We applied the concept of secondary sealing to the module and then performed several stability tests such as humidity cycle, 1 sun light soaking and outdoor stability tests. The enhanced stability was confirmed for the DSSC module employing optimized sealing materials and architectures.

상아질 접착제의 상아세관 밀봉지속효과에 관한 연구 (A STUDY OF THE DURABILITY OF DENTINAL TUBULE SEALING EFFECTS OF DENTIN BONDING AGENTS)

  • 김의성;박동수
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.180-193
    • /
    • 1994
  • The purpose of this study was to observe the sealing ability and durability of All-Bond 2, Gluma Bonding System, Scotch bond 2 and Superbond D-liner which are dentin bonding agents used as desensitizing agents. The durability of the sealing ability of the materials were compared after 0, 140, 420, 840 tooth brushing strokes. 120 extracted teeth were divided into 5 groups and the agents were applied to the exposed dentin. No agents was applied on group I, the control group. Each specimen went through thermocycling from $5^{\circ}$ to $55^{\circ}C$, 200 times. Each group was devide into 4 subgroups and artificial tooth brushing strokes were done for 0, 140, 420, 840 times. Finally the specimens were stored in 0.5 % methylene blue solution for 24 hours in a incubator set at $37^{\circ}C$. The tooth were sectioned perpendicular to the long axis and the dye penetration ratio to the pulp was measured. The following results were obtained. 1. All four dentin bonding agents initially showed excellent sealing ability. 2. All-bond 2, Gluma Bonding System and Superbond D-liner showed durability of dentinal tubule sealing effect after 840 strokes(6-week) artificial tooth brushing. 3. Scotchbond 2 showed a significant decrease in sealing ability after 420 strokes(3-week) artificial tooth brushing. (P<0.05).

  • PDF

Al-Zn-Zr 열용사 코팅의 캐비테이션 거동에 대한 실링의 효과 (Effects of sealing on cavitation behavior of Al-Zn-Zr thermal spray coating and sealing)

  • 김성종;한민수;이승준
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.245-246
    • /
    • 2009
  • The large and high-speed vessels have been greatly advanced, but ship materials have been caused the problem such as corrosion, cavitation and erosion. Cavitation can produce material damage such as pumps, turbines, valves and ship propellers etc. To solve these problems, the cavitation and electrochemical characteristics for thermal spray coating and the sealing are executed to obtain the excellent corrosion protection characteristics in sea water environment.

  • PDF

초다공성 에어로젤 함유 섬유상 복합체를 이용한 신발 안창소재에 관한 연구 (Study on Ultra Porous Aerogel/fiber Composite for Shoe Insole)

  • 오경화;박순자
    • 한국의류학회지
    • /
    • 제33권5호
    • /
    • pp.701-710
    • /
    • 2009
  • This study was conducted to develop excellent insole with good thermal insulation using new materials. We investigated that aerogel/fiber composite can be used as padding materials of shoes by comparing surface shape, moisture regain, water vapor permeability, thermal insulation and compression rate of insole materials tried with nonwoven fabric padding materials and insole sold in market. The results are as follows. Surface shapes were shown that the most appropriate material for sealing aerogel/fiber composite was high density fabric as per size of particle of aerogel. Moisture regain of aerogel/fabric composite was better than nonwoven fabric padding samples. However, when compared to insole sold in market, its moisture regain was worse than those of insole merchandises. Water vapor permeability was higher in material padded with nonwoven fabric than materials padded with aerogel/fiber composite in all three kinds of sealing fabrics. Thermal conductivity of aerogel/fabric composite was lower than nonwoven fabric material regardless of sealing fabrics. Thermal insulation of aerogel/fiber composite was higher than padding material of nonwoven fabric regardless of sealing fabrics. Compression rate of nonwoven (SP1) was higher than that of aerogel/fiber composite (SP2). Compressive elastic recovery rate of SP1 was also higher than that of SP2, which its compression rate and compressive elastic recovery rate were both poor. As the above result, ultra porous aerogel/fiber composite were proved to be material of good thermal insulation with lower thermal conductivity and also compression rate was proved to be low. Therefore, we can say that aerogel/fiber composite have high possibility to be used as insole materials for cold winter shoes requiring good thermal insulation protection.