• Title/Summary/Keyword: Sealed basket type

Search Result 2, Processing Time 0.017 seconds

Optimization for the Nuclear Fuel Irradiation Capsule under Thermal Loading (열하중하에서 핵연료조사캡슐에 대한 최적화)

  • Choi, Young-Jin;Lee, Young-Shin;Kang, Young-Hwan;Lee, Joong-Woong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.564-569
    • /
    • 2003
  • During fuel irradiation tests, all parts of cylindrical structure with multiple holes act as heat sources due to fussion heal and ${\gamma}-flux$. The high temperature is especially generated over $2500^{\circ}C$ in the center of pellet. Due to the high temperature, many problems occur, such as melting of pellet and declining of heat transfer between cladding and coolant. [n this study, it is attempted 10 minimize the temperature of pellet using optimization method about geometric variables. For thermal and optimization analysis or structure. the finite element method code. ANSYS 5.7 is used. In this procedure. subproblem approximation method is used to the optimization methods. Through the optimum design process, the temperature of sealed basket type is reduced from $2537^{\circ}C$ to $2181^{\circ}C$ and the temperature of open basket type is reduced from $2560^{\circ}C$ to $2106^{\circ}C$.

  • PDF

Optimization for the Cylindrical Structure with Multi-Holes Under Thermal Loading (열하중을 받는 다공원통구조물의 최적화)

  • Lee Young-Shin;Choi Young-Jin;Kang Young-Hwan;Lee Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1509-1516
    • /
    • 2004
  • During fuel irradiation tests, all parts of cylindrical structure with multiple holes act as heat sources due to fussion heat and ${\gamma}$-flux. The high temperature is especially generated in the center of pellet. Because of the high temperature, many problems occur, such as melting of pellet and declining of heat transfer between cladding and coolant. In this paper, it is attempted to minimize the temperature of pellet using optimization method. For thermal and optimization analysis of structure, the finite element method code, ANSYS 5.7 is used. Through the optimum design process, the temperature of SBT diminished 10% and the temperature of OBT diminished 18%.