• Title/Summary/Keyword: Sealability

Search Result 7, Processing Time 0.017 seconds

Mechanical Properties and Morphology of the Recycled Thermoplastic Elastomer Molding (재생 엘라스토머 수지의 기계적 물성과 모폴로지)

  • No, B.S.;Lee, G.H.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.31-35
    • /
    • 2007
  • Automotive weather strip should have good weather ability, sealability, durability, etc. to perform its duty as body sealing for vehicles under different harsh environments. Due to its comprehensive properties, thermoplastic vulcanizate(TPV) is widely employed in weather strip as alternative for ethylene propylene diene rubber(EPDM). In this study, the influences of the recycled TPV on the tensile strength and hardness were investigated. As results of the injection molding experiment, the recycled TPV's tensile strength and hardness were higher than the virgin TPV and recycled TPV's extension was improve. The morphology showed that recycled TPV's rubber particles became smaller than virgin TPV's rubber particles.

The Extinguishing Characteristics by Fluidity Variation of Protein Foam Extinguishing Agent (단백포소화약제의 유동성 변화에 따른 소화 특성)

  • Shin, Changsub;Jeong, Hyunjeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.18-23
    • /
    • 2014
  • Foam extinguishing agent is widely used for extinguishing combustible liquid fires. Compared to other foam type extinguishing agents, protein foam has relatively low cost and low toxicity and produces stable foam blanket which is excellent in heat resistance and sealability, despite it has weak fluidity. Therefore the study investigated foaming characteristics followed by various factors affecting the fluidity of the protein foam extinguishing agent. The extinguishing characteristics differentiated by the changes in fluidity were also experimented. Foaming performance was compared by measuring the expansion ratio and the 25% drainage time. Moreover, the 25% drainage time and the extinguishing time was compared. The results showed that the 25% drainage time and the expansion ratio were increased as the pressure of nozzle and the concentration of hydrolyzed protein liquid enlarged. However the foaming and extinguishing performance were not improved when the condition exceeded certain level of pressure and concentration. The fastest fire extinguishing condition was the nozzle pressure 4bar with the 85wt.% of concentration of hydrolyzed protein liquid.

EVALUATION OF APICAL SEAL ACCORDING TO TYPES OF SPREADER AND COMPATIBILITY OF ACCESSORY CONE USED IN LATERAL CONDENSATION METHOD WITHOUT SEALER (Spreader의 종류와 Accessory cone의 접합성에 따른 근단폐쇄성에 관한 실험적 연구)

  • Ahn, Young-Mi;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.461-472
    • /
    • 1994
  • The purpose of this study was to evaluate the sealing ability according to types of spreader and compatibility of accessory cone used in lateral condensation method. 120 plastic blocks with canal preformed were instrumented with K-,H-files and Gates-Gllidden bur. Shaped plastic blocks were divided into six experimental groups according to spreader and accessory cone used in lateral condensation. Then they were obturated by lateral condensation method without -sealer. Six experimental groups were as follows: Group 1 : Filling with #30 spreader & #25 gutta-percha cone Group 2 : Filling with #30 spreader & Fine accessory cone Group 3 : Filling with #3 spreader & #25 gutta-percha cone Group 4 : Filling with #3 spreader & Fine accessory cone Group 5 : Filling with #20,#30 spreader & #25 gutta-percha cone Group 6 : Filling with #2, #3 spreader & Fine accessory cone All the blocks were stored in 100% humidor at room temperature for 2 days. Each block was placed in centrifuged for 20 minutes at 3,000 rpm. Apical leakage was mesured from the apical foramen to the most coronal level of- dye leakage in millimeter under a stereoscope. The data were analysed by ANOVA. The obtained results were as follows; 1. In groups using two spreaders(Group 5,6), the linear leakage was less than one spreader using groups(Group 1-4). 2. Tn groups using two spreaders(Group 5,6), there was no significant difference in linear leakage between standardized -spreader group and non standardized group (p>0.01). 3. When one spreader was used(Group 1-4), standardized-spreader groups showed less linear leakage than nonstandardized spreader groups(P<0.01). 4. In case of using same spreader(Groupl,2 & Group 3,4), there was no significant difference in linear leakage according to accessory cone type. 5. It needs to use one more spreaders to increase apical sealability.

  • PDF

High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications (SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동)

  • Lee, Jae-Chun;Kwon, Hyuk-Chon;Kwon, Young-Pil;Park, Sung;Jang, Jin-Sik;Lee, Jongho;Kim, Joosun;Lee, Hae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

Development of Edible Laminate-Composite Films Using Defatted Mustard Meal and Whey Protein Isolate (탈지겨자씨와 유청단백질을 재료로 사용한 가식성 적층필름의 개발)

  • Kim, Dayeon;Park, Ji Won;Noh, Bong-Soo;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.711-715
    • /
    • 2012
  • A laminate-composite film was developed using industry co-products of defatted mustard meal (DMM) and whey protein isolate (WPI). An individually prepared DMM-based film (DMM film) and a WPI-based film (WPI film) were thermally laminated at $130^{\circ}C$ at a rate of 30 cm/min. Microscopic images exhibited that the DMM film and the WPI film were continuously attached in the laminate without void spaces. The tensile strength, elongation at break, and water vapor permeability for the laminate were 0.7MPa, 4.0%, and $6.9g{\cdot}mm/kPa/h/m^2$, respectively. Stretchability and heat seal strength of the laminate were higher than those of the un-laminated DMM film. The film layers of the laminate were physically overlapped, not forming new biopolymer units induced by molecular interactions. The opportunity for DMM films to be used as food packaging materials for wrapping and sealing could be increased by thermal lamination with WPI films, which improves the stretchability and heat sealability of DMM films.

Comparison of the sealing ability of various bioceramic materials for endodontic surgery

  • Benjamin Rencher ;Ana M. Chang ;Hanson Fong;James D. Johnson;Avina Paranjpe
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.3
    • /
    • pp.35.1-35.11
    • /
    • 2021
  • Objectives: Endosequence Bioceramic Root Repair Material (BC-RRM) is used in endodontic microsurgery. It is available as a paste and a putty. However, no studies to date have examined the sealing ability of these forms alone or in combination as root-end filling materials. Hence, this study aimed to compare the sealing properties of these 2 forms of BC-RRM. Materials and Methods: Forty-two extracted upper anterior teeth were divided into 3 experimental groups, a positive and negative control. After the root canal treatment, the root ends were resected, retroprepared and retrofilled with either putty, paste + putty or mineral trioxide aggregate (MTA). The teeth were mounted in tubes so the apical 3 mm was submerged in Brain Heart Infusion (BHI) broth. The coronal portions of the canals were inoculated with Enterococcus faecalis and BHI broth and incubated for 30 days. The broth in the tubes was analyzed for colony forming units to check for leakage of bacteria from the canal. The teeth from the groups were sectioned and analyzed using scanning electron microscopy (SEM). The Kruskal-Wallis test and analysis of variance were used to analyze the data with a significance level p < 0.05. Results: The BC-RRM and MTA groups showed similar sealing ability. The positive control showed leakage in all samples. The SEM imaging showed the presence of bacteria in all experimental groups at the material-tooth interface. Conclusions: No significant differences were noted in the experimental groups, providing sufficient evidence that any combination could be effectively used during endodontic microsurgery.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF