• Title/Summary/Keyword: Sea-sediment

Search Result 909, Processing Time 0.024 seconds

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Growth of two mud shrimps (Upogebia major and Austinogebia wuhsienweni) settled in Boryeong and Hongseong tidal flat (보령과 홍성 갯벌에 착저한 쏙 2종(Upogebia major and Austinogebia wuhsienweni)의 성장)

  • Song, Jae-Hee;Ahn, Hyun-Mi;Jeung, Hee-Do;Chung, Sang-Ok;Kang, Hee-Woong
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.217-227
    • /
    • 2019
  • The purpose of this study was to investigate the initial growth, burrowing depth, and relative growth of mud shrimps (Upogebia major and Austinogebia wuhsienweni), living in damaged high density tidal flat shellfish farms form 2008 in the Western coast of Korea. By August, young mud shrimps (Upogebia major), which had settled down on the tidal flats in early May, grew to more than 10 mm in carapace length (CL). At the end of the first year, their CL and total length (TL) increased to 14.21 mm and 42.28 mm, respectively. The inhabiting depth of the young mud shrimps (Upogebia major) increased rapidly up to about 6 months after stocking (5 cm in July, 12.5 cm in September, and 28 cm in November, respectively). The inhabiting depth of adult mud shrimps in their burrows was about 10-93 cm during the year. As results, the analysis of the relative growth between the carapace length (CL) - the total length (TL) and the CL - total wet weight (TWW), the total wet weight of mud shrimps at Boryeong Saho (inner part of the Cheonsu-bay) was estimated to be 1.2-4 g heavier than those of Boryeong Jugyo (Outer part of the Cheonsu-bay) tidal flat. The young mud shrimps primarily grew from April to October. It is therefore crucial to observe whether the settlement of young mud shrimps on tidal shellfish farms from May to June to minimize the damage of shellfish farms by newly stocked young mud shrimps. In addition, it is recommended that young mud shrimps grown in fisheries be harvested before they dig deep into the sediment until early December.

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Bacteriological and Physicochemical Character of Sea Water and Sediments in South Western Part of Jinhae Bay, Korea (진해만 남서부 해역의 해수와 저질의 세균학적 및 이화학적 특징)

  • Choi Jong Duck;Kim Jeong Gyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The bacteriological and physicochemical analysis of sea water and sediments in south western part of Jinhae Bay was conducted. The samples were collected from 40 stations, which were established once a month from January to December, 2000. During the study period, the range of temperature was from 5.5 to $23.7^{\circ}C$, the concentration of chemical oxygen demand ranged from 1.20 to 1.55 mg/L, dissolved oxygen ranged from 3.7 to 9.1 mg/L, dissolved inorganic nitrogen ranged from 2.79 to 7.09 $\mu$g-at/L phosphate phosphorus ranged from 0.39 to 0.57 $\mu$g-at/L, and chlorophyll-$\alpha$g-at/L ranged from 4.28 to $9.66 mg/m^{3}$. The chemical oxygen demand, acid volatile sulfide and ignition loss of sediments in south western part of Jinhae Bay ranged from 0.04 to 0.40, from 24.23 to 35.52 mg/L and from 10.49 to $11.09\%$ respectively. The coliform group and fecal coliform MPN's of sea water in south western part of Jinhae Bay ranged from <3.0 to 1,600 MPN/1003nL (means <3.0 MPN/100 mL) and from <3.0 to 93 MPN/100 mL (means <3.0 MPN/ 100 mL), respectively. The coliform group was classified with IMViC reactions were analyzed. Two hundred eighteen strains that were obtained from sea water samples in south westen of Jinhae Bay represented Escherichia coli group, $61.9\%$; Citrobacter freundii group, $12.1\%$; Enterobacter aerogenes, $14.1\%$; and unknown, $11.9\%$.

Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile (칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일)

  • Choe Moon Young;Jo Hyung Rae;Sohn Young Kwan;Kim Yeadong
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.23-33
    • /
    • 2004
  • The Lago Sofia conglomerate in southern Chile is a lenticular unit encased within mudstone-dominated, deep-sea successions (Cerro Toro Formation, upper Cretaceous), extending from north to south for more than $120{\cal}km$. The Lago Sofia conglomerate is a unique example of long, gravelly deep-sea channels, which are rare in the modern environments. In the northern part (areas of Lago Pehoe and Laguna Goic), the conglomerate unit consists of 3-5 conglomerate bodies intervened by mudstone sequences. Paleocurrent data from these bodies indicate sediment transport to the east, south, and southeart. The conglomerate bodies in the northern Part are interpreted as the tributary channels that drained down the Paleoslope and converged to form N-S-trending trunk channels. In the southern part (Lago Sofia section), the conglomerate unit comprises a thick (> 300 m) conglomerate body, which probably formed in axial trunk channels of the N-5-trending foredeep trough. The well-exposed Lago Sofia section allowed for detailed investigation of sedimentary facies and large-scale architecture of the deepsea channel conglomerate. The conglomerate in Lago Sofia section comprises stratified conglomerate, massive-to-graded conglomerate, and diamictite, which represent bedload deposition under turbidity currents, deposition by high-density turbidity currents, and muddy debris flows, respectively. Paleocurrent data suggest that the debris flows originated from the failure of nearby channel banks or slopes flanking the channel system, whereas the turbidity currents flowed parallel to the orientation of the overall channel system. Architectural elements produced by turbidity currents represent vertical stacking of gravel sheets, lateral accretion of gravel bars, migration of gravel dunes, and filling of channel thalwegs and scoured hollows, similar to those in terrestrial gravel-bed braided rivers. Observations of large-scale stratal pattern reveal that the channel bodies are offset stacked toward the east, suggestive of an eastward migration of the axial trunk channel. The eastward channel migration is probably due to tectonic tilting related to the uplift of the Andean protocordillera just west of the Lago Sofia deep-sea channel system.

  • PDF

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF

Optimal Determination of Marine Seismic Data Processing Parameter for Domi-Sediment Basin (도미퇴적분지 해양탄성파 탐사자료 최적 전산처리 변수도출)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Yoo, Dong-Geun;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2008
  • Korea Institute of Geoscience & Mineral Resources (KIGAM) carried out 2 dimensional multi-channel seismic surveys for Domi-Basin of east-southern part of Jeju Island, South Sea, Korea in 2007. The purpose of this survey is to investigate the structure of acoustic basement and the potential of energy resources in the Korean shelf. It is essential to produce fine stack and migration section to understand the structure of basement. However a basement can not be clearly defined where multiples exist between sea surface and seafloor. This study aimed at designing the optimal data processing parameter, especially to eliminate the peg-leg multiples. Main data processing procedure is composed of minimum phase predictive deconvolution, velocity analysis and Radon filter. We tested the efficiency of processing parameter from stack sections of each step. Our results confirmed that processing parameters are suitable for the seismic data of Domi-Basin.

Marine Bio-environmental Characteristics with the Distributions of Dinoflagellate Cyst Assemblages in the Ulsan Coastal Waters (UCW) (와편모조 시스트 분포에 의한 울산연안 해역의 생물해양환경 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • This study described the spatial distribution of dinoflagellate cyst assemblages in the Ulsan Coastal Waters (UCW). Surface sediment samples from 15 stations revealed the occurrence of 33 species involving the Groups Protoperidinioid (51.5%), Gonyaulacoid (30.4%), Calciodineloid (9.1%), Gymnodinioid (3.0%), Diplopsallid (3.0%) and Tuberculodinioid (3.0%). The recorded cyst abundance in the UCW recorded was low ($260{\sim}1,680cysts\;g-dry^{-1}$) compared to Korean coastal waters. The abundance of heterotrophic cysts is higher in the Ulsan harbour and northwestern parts of UCW with eutrophic areas, however autotrophic species are more prevalent in the southern parts with open sea environments. The dinoflagellate cyst assemblages in the UCW were characterized by the dominance of Gonyaulax scrippsae, Protoperidinium sp. (Brigantedinium sp.), and Gonyaulax spinifera complex. The advent of the toxic dinoflagellate, Pyrodinium bahamense var. bahamense was recorded for the first time in the East-south sea of Korea. Therefore, as a result of ongoing monitoring and management for new toxic dinoflegallates from tropical or subtropical regions, analysis of dinoflagellate cyst assemblages in the UCW has been deemed necessary.

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.

Morphological Characteristics and Control Factors of Bedforms in Southern Gyeonggi Bay, Yellow Sea (황해 경기만 남부해역에 발달된 층면구조의 형태적 특징과 제어 요인)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Lee, Yong-Kuk;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.608-624
    • /
    • 2010
  • Morphological surveys of southern Gyeonggi Bay in the Yellow Sea were conducted for2 years (2006 and 2007) by using multibeam echosounder for investigating the morphological features of bedforms. The subaqueous dunes are shown in various shapes (A~F type) and continuous spectrum of heights and lengths of transverse-to-current dunes on the wide range of sedimentary types. The height-length power-law correlation of dunes is $H_{mean}=0.0393L^{0.8984}$ (r=0.66). The comparison between Flemming (1988)'s correlation and height-length correlation of this study indicates that the subaqueous dunes in the study area are equilibrated in the present hydrological and sedimentary environment. The major controlling factors to thedevelopment and maintenance of subaqueous dunes are both strong tidal currents and the abundant availability of sand. Marine sand mining, artificial impact, changes from the original shape to an irregular shape of the subaqueous dunes with a shorter wavelength and lower height, which has influence on the development and maintenance of bedform because it causes a decrease of the availability of sediment. Water depth and sedimentary characteristics, and othercontrolling factors seem to play limited roles in the development and maintenance of subaqueous dunes.