• Title/Summary/Keyword: Sea-sediment

Search Result 909, Processing Time 0.023 seconds

Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images

  • Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.

A Study on the Characteristics and Burial Ages of Sediment Deposits at Jiduri, Daecheong Island (대청도 지두리 해안의 모래 퇴적층의 특성과 매몰연대에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • The characteristics and burial ages of sand sediments on the Jiduri coast in Daechung-myeon, Ongjin-gun, Incheon were investigated. Daecheong Island is the area where the characteristics of the rocky coast and sand coast are shown. Various studies have been conducted on the Okjukdong sand dune that appears in the north of the island. However, there has been no study on the sandy sedimentary topography of the Jiduri and Moraewul area in the south. The sandy sedimentary terrain of Jiduri is divided into sandy beaches, sand dunes and sand deposits along the slope including climbing dune. Overall, the depth of sandy sediments in Jiduri is not deep. The characteristics of sandy sediments and burial ages were investigated at an elevation of about 23 m above sea level at the back of Jiduli Beach and 46 m above sea level at the ridge line between Jiduri and Moraewol. From the Jiduri coast to the hillside behind, the average grain size decreases and the sorting becomes better as it moves from the intertidal zone to the beach and the foredune. This indicates the selective sand transport by the wind and can be judged by the terrain formed under the current sedimentation environment. The average grain size at the upper part of the section of JD-1 (elevation of about 23m MSL) was $1.6918{\varphi}$ of medium sand. The sorting was $0.4584{\varphi}$, skewness was -1.0491 and kurtosis was -1.2411, respectively. Particularly, the average particle size of the crosssection issomewhat uniform, but the color of the constituent material changes from brown to black. In the case of JD-2 (about 46 m MSL), the mean grain size of the section was $1.7943{\varphi}$, the sorting was 0.4931, the skewness was -1.1163, and the kurtosis was 1.2133. On the other hand, the brown and black layers of JD-1 exhibited a burial age of $0.1{\pm}0.0ka$ and the JD-2 had a burial age of $0.7{\pm}0.0ka$.

Implications of Deep Nitrite in the Ulleung Basin (울릉 분지 저층수의 아질산염)

  • Lee, Tong-Sup;Kim, Il-Nam;Kang, Dong-Jin;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.239-243
    • /
    • 2007
  • Presence of bottom water nitrite in the Ulleung Basin was remarkable because it is totally unexpected phenomenon at such an oxygen-rich environment. Yet no scientific explanation was set forward. Of several plausible explanations, following the Ockham's suggestion, a leaching of nitrite as an intermediate product of denitrification in the top sediment at the slope is most agreeable to given environmental settings. There seems no complementary process to make up the loss of N in the Ulleung Basin, which seems contribute to the characteristically low N:P ratio in the deep waters. If warming proceeds that weakens the thermohaline circulation, a current biological pump may stall and the phytoplankton assemblage might replaced drastically. If so this will pause an utmost challenge to the ecosystem of the East/Japan Sea. Still there remains a contradictory sedimentary signature that requests further explanation regarding the N (or organic C)-cycle such as extraordinarily high organic carbon content despite abundant oxidants in the overlying waters.

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits (황해 남동 이질대 퇴적물의 점토광물분포 및 특성)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.163-173
    • /
    • 2012
  • In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

Studies on Marine Sediments of the Korean Seas. I. Concentrations and Distributions of Some Ceochemical Elements in Sediments from the Sea off Eastern Korea (한국근해의 해저토에 관한 연구 I. 동해 해저토의 지화학적 성분의 함량과 분포)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.1-15
    • /
    • 1971
  • Some major and minor geochemical contents, such as Zr, Br, Ni, Sr, Zn, Mn, Ti and Fe, of ninety-seven sediment samples from the sea off eastern Korea have been analyzed by the fluorescence spectrometric techniques. Concentrations of elements showed 22-962ppm Zr(averaging 194.4ppm), tr-220 ppm Br(averaging 138.2ppm), 31-141ppm Ni(averaging 89.1ppm), 118-3,494ppm Sr(averaging 448.6ppm) 27-134ppm Zn(averaging 92.5ppm), 38-1,043ppm Mn(averaging 664.2ppm), 0.04-0.42% Ti(averaging 0.29%) and 0.57-4.02% Fe(averaging 2.76%). The ratios of Zn/Ti 10$\^$3/, An/Fe 10$\^$3/ and Ti/Fe were 0.27-6.43(averaging 3.27), 2.25-7.76 (averaging 3.46) and 0.04-0.18(averaging 0.11), respectively. From the results of geochemical analyses of sediments from the sea off eastern Korea represented the different types of sediment pattern are considered between the southern part and the northern part of the sea. The bottom sediments of the southern part were characterized with higher Sr and lower Zn, Br contents; higher Zr and lower Br contents; lower Br and lower Zn, Ti and Fe contents; and lower Zn and lower Ti and Fe contents.

  • PDF

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

The Impact of Nakdong Estuarine Barrage on Distribution of Biogenic Silica (BSi) in Surface Sediment (하구둑이 낙동강 하구 표층 퇴적물 생규소(BSi) 분포에 미치는 영향)

  • KIM, YUNJI;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.172-186
    • /
    • 2017
  • Current study is a part of the efforts to assess the estuarine barrage effects on the coastal ecosystem induced by the Si flux changes. Surface sediments from Seomjin and Nakdong estuary and sediment cores from Nakdong estuary was analysed to investigate the effect of estuarine barrage on the distribution of grain size, organic matter (loss on ignition: LOI) and biogenic silica (BSi). The samples of Seomjin estuary were collected in March, 2015 and those of Nakdong estuary were collected in November, 2014. Generally, the longitudinal distribution of grain size, LOI and BSi in Seomjin estuary, natural estuary, was gradually changed. However mud (silt and clay), LOI and BSi increased from station mid-estuary where tide reaches year-round. The distribution of grain size, LOI and BSi in Nakdong estuary, however, were entirely different between inside and outside of estuarine barrage. The mud percentage and LOI were low and consistent in inside of the barrage except R05, inside of right gate, yet those of outside of the barrage were higher and varied by adjacent sluices. Mud, LOI and BSi of ND1 and ND2 decreased immediately after the construction of Nakdong estuarine barrage due to disturbance of sediment and decrease of sediment supply. To exclude the physical effects by the barrage, BSi excess ($BSi_{exc}$) was calculated using regression equation of BSi-LOI and BSi-mud of Seomjin estuary. $BSi_{exc}$ of Seomjin estuary decreased gradually from upper estuary to lower estuary. $BSi_{exc}$ of Nakdong estuary were positive in inside of the barrage and negative in outside of the barrage. BSi retention and shift of species composition of diatom by the barrage would affect $BSi_{exc}$ distribution. Before the construction of Nakdong estuarine barrage, $BSi_{exc}$ of ND2 was negative and consistent owing to high mud sedimentation. After the construction, $BSi_{exc}$ of ND2, however, fluctuated due to continuous disturbance of sediment due to construction of Eulsuk bridge and East gate.

Spatial Distribution of Soft Bottom Macrobenthos of Yeoja Bay in Summer Season, South Coast of Korea (여자만 연성저질의 여름철 대형저서동물 공간분포)

  • Lim, Hyun-Sig
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.78-91
    • /
    • 2015
  • Macrobenthic community was studied at 87 stations including intertidal and subtidal area in Yoja Bay, south coast of Korea in summer season of July 2001. Duplicate sediment samples were taken using a van Veen grab ($0.1m^2$) in each station. Mud facies of the sediments were widly distributed in the bay. And relatively high content of sand was shown in the Bulgyo-cheon stream estuary. A total of 274 species was occurred with a mean density of $2,346ind./m^2$ and a mean biomass of $78.2g/m^2$. The polychaetes were species- and density-dominant faunal group with a total of 122 species (44.5% of the total number of species), and mean density of $1,543ind./m^2$ (65.8% of the mean density). Meanwhile, molluscs were biomass-dominant faunal group with $44.4g/m^2$. Bio-Env. analysis showed that the combination of bottom salinity and sand content of the surface sediments was highly correlated to the major macrobenthic communities. The macrobenthic species number, decreasing toward inner bay from mouth of the bay, was significantly correlated to the sediment environmental variables and bottom water salinity. The spatial distribution of abundance showed significant correlation to the sand and mud contents and mean grain size of the surface sediments. Major dominant species were Minuspio japonica (polychaete) with a mean density of $1,167ind./m^2$ at upper part of the bay where salinity was low and Eriopisella sechellensis (amphipod) with $152ind./m^2$ in central part of the bay. Species diversity (H') was $3.0{\leq}$ in the mouth part of the bay and ranged 2.0-3.0 in the inner part of the bay, which showed a significant positive correlation to bottom salinity. Total number of species also showed significant correlations to the sediment composition and bottom salinity. Based on the cluster analysis the macrobenthic community of the bay was classified into five station groups from the bay mouth toward the inner part of the bay depending on the species composition. From the SIMPER analysis Minuspio japonica, Eriopisella sechellensis and Sternaspis scutata mainly contributed to the classification of station group. These results suggested that the macrobenthic communities of the bay were mainly influenced by bottom salinity together with sediment composition, and that the studies of spatial distributions of major dominant species and benthic communities should be conducted continuously to monitor the Yeoja Bay benthic environment.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.