• Title/Summary/Keyword: Sea-sediment

Search Result 909, Processing Time 0.027 seconds

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea (북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미)

  • Yoon, Ho-Il;Kim, Yea-Dong;Yoo, Kyu-Cheul;Lee, Jae-Il;Nam, Seung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

Evaluation of Correction Parameter for the Free-fall Grab Based Mn Nodule Abundance in the Southern Sector of the KODOS (KODOS 남쪽광구에서 자유낙하식 채취기로 채취된 망간단괴 부존률 평가를 위한 보정상수 검증)

  • Lee, Hyun-Bok;Ko, Young-Tak;Kim, Jong-Uk;Chi, Sang-Bum;Kim, Won-Nyon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.475-483
    • /
    • 2011
  • Quantitative estimate of manganese nodules based on the operation of a free fall grab (FFG) needs to be corrected because of its less retrieval ability. Previously, the correction parameter of the nodule abundance collected by FFG was calculated based on the image analysis of the photos of bottom sediment in the northern sector of the nodule exploration area of Korea in the NE equatorial Pacific. However, nodules in the southern sector are commonly covered by sediment, which may prevent the use of the correction parameter estimated by photographic techniques. In this study, we attempted dual nodule sampling at the same location by different equipments (i.e. box corer (BC) and FFG) to examine the previous correction parameter of nodule abundance for FFG operation. During the exploration cruises in 2007 to 2009, Mn-nodules were collected from 40 stations both by BC and FFG in the southern sector. The correlation analysis between BC and FFG operations revealed that the BC collected nodules 1.43 times larger than FFG. Our result suggests that the correction parameter of 1.43 can be applied for collection of FFG data to estimate Mn-nodule distribution in the southern sector. The obtained parameter is similar to the previous parameter (1.42~1.45) calculated by the image analysis method, indicating an usefulness of new correction parameter suggested by this study.

Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea (동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향)

  • Kim, Bong-Chae;Choi, Bok-Kyoung;Kim, Byoung-Nam
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

Paleomagnetism of Deep-sea Core Sediment in Southwestern Pacific (남서태평양 심해분지 주상퇴적물의 지자기 층서 연구)

  • Moon, Jai-Woon;Kim, Ki-Hyune;Chi, Sang-Bum;Lee, Gun-Chang;Doh, Seong-Jae;Park, Cheong-Kee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.135-141
    • /
    • 2001
  • A paleomagnetic investigation was carried out to analyze magnetostratigraphic information and to evaluate the relationship between paleoenvironment and magnetic properties in sedimentary sequences of piston cores recovered from the abyssal basin of the southwestern Pacific. Pateomagnetic results revealed that the sediments had a stable remanent magnetization and recorded both normal and reversal polarities. The age of sediments was from late Pliocene and Pleistocene determined by matching the polarities with the geomagnetic time scale. The sedimentation rates were in the range of 0.63-1.85 mm/$10^3$ year which were extremely low rates. The results of the paleomagnetic analyses indicated that intervals of the magnetically stable layers as well as high value of susceptibility were significantly affected by the input changes which resulted input of large-quantity materials of relatively stable magnetic carriers.

  • PDF

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea (한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자)

  • Lim, Dhong-Il;Kim, Young-Ok;Kang, Mi-Ran;Jang, Pung-Kuk;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

A Study on Seabed Interpretation System Using Supersonic Waves (초음파를 이용한 해저면 판독 시스템에 관한 연구)

  • 김재갑;김원중;황두진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.385-391
    • /
    • 2001
  • In this study, we will develop the sea surface interpretation system that can aware the target in the bottom of the sea. we will setup the database whose records would be the signal patterns of formation about mud, sand, rock and sea shell achieved by using supersonic. then we will convert analog signal received in fish detector to digital one using A/D converter So we can process and analyze this signal pattern then compare it to the one in our Database at the real time to identify the target in the bottom of the sea. After enough times of experiments from the background of the results that have been achieved from many studies(including a water tank experiment and a field investigation), we can aware the exact information of the sediment and the sand in the sea. By analyzing the first, second and third signal of the supersonic characters reflected from the body of a fish categorized by its family and from the body of shellfish, muddy sand, sand and rocks, We will develop the sea surface decipherment system which abstracts the first signal that shows the target in the bottom of the sea and makes the second and third signals filtering.

  • PDF

Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud

  • Koo, HyoJin;Lee, YunJi;Kim, SoonOh;Cho, HyenGoo
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.989-1000
    • /
    • 2018
  • The provenance of the Central Yellow Sea Mud (CYSM) in the Yellow Sea has been attracted a great deal of attention over the last three decades, but a consensus is not yet reached. In this study, 101 surface sediment samples collected from the CYSM were investigated to determine provenance and transport mechanisms in the area using the clay minerals and major element components. The Huanghe sediments are characterized by higher smectite, but the Changjiang sediments are more abundant illite contents. Western Korean rivers contain more kaolinite and chlorite than do Chinese rivers. The Chinese rivers have higher $Fe_2O_3$, MgO, and CaO than the Korean rivers at the same $Al_2O_3$ concentration. Therefore, the clay minerals and major element concentrations can be useful indicator for the source. Based on our results, we suggest that the surface sediments in CYSM were composed mainly of Changjiang sediments, mixed a partly with sediments from the Huanghe and the western Korean rivers. Although the northwestern part of CYSM is proximate to the Huanghe, the contents of smectite and CaO were extremely low. It could be evidence that the Huanghe materials do not enter directly into the CYSM due to the Shandong Peninsula Front. Considering the oceanic circulation in the Yellow Sea, the Changjiang sediments could be transported eastward with the Changjiang Diluted Water and then mixed in CYSM via the Yellow Sea Warm Current (YSWC). Huanghe sediments could be provided by coastal currents (Shandong Coastal Current and Yellow Sea Coastal Current) and the YSWC. In addition, sediments from western Korean rivers might be supplied into the CYSM deposit via the Korean Coastal Current, Transversal Current, and YSWC.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

A Study on the Erosion and Sedimentation Traces According to the Sea Level Changes Since the Medieval Warm Period in the Hwaseong Coast (화성 연안의 중세온난기 이후 해수면 변동에 연동된 침식·퇴적 흔적 연구)

  • Yang, Dong-Yoon;Han, Min;Kim, Jin Cheul;Park, Sujeong;Lim, Jaesoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.39-54
    • /
    • 2019
  • In this paper, based on evidence of coastal sediment, we show that erosion and sedimentation environments are very sensitive to sea level changes during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). We identified four sedimentary units(4.57-3.07m), which formed in the Dark Age Cool Period (DACP), MWP and LIA were classified based on the lithostratigraphy, grain size distribution, magnetic susceptibility and geochemistry of a drilling core taken from the west coast of Hwaseong City. The unconformity surfaces as boundaries of the units were also identified by the lithostratigraphy shown on the drilling core. We propoese that sedimentation was dominant in the area during the periods of sea level rise, whereas erosion prevailed during the periods of sea level fall. Particularly, extreme events, such as floods and typhoons are believed to have accelerated these processes, and we found the associated evidence in sediments of two units. This study provides an example of estimating the relative sea level variation using coastal sediments and may be useful for studying past sea level changes around the Korean Peninsula.

Physical and Acoustic Properties of Sediment around the Yeosu Sound (여수해만 주변해역 퇴적물의 물리적 및 음향학적 성질)

  • KIM Gil-Young;SUNG Jun-Young;KIM Dae-Choul;KIM Jeong-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.434-444
    • /
    • 1994
  • Physical and acoustic properties of sediment core samples recovered from the Kwangyang Bay, the Yeosu Sound, and the inner shelf of central South Sea, Korea were investigated. Compressional wave velocity, density, porosity, and shear strength were measured at 10cm interval's along the core depth. Sediment texture(grain size, sand, silt, and clay contents) were also measured and correlated with the physical properties(density, porosity, and shear strength). The physical and acoustic properties of the sediment changed gradually from the Kwangyang Bay to the shelf area in accordance with the distance from the input source of the terrigenous sediment. The Yeosu Sound acted as a route of sediment transport from the estuary(the Seomjin River) to the shelf and vice versa. The physical and acoustic properties of the Yeosu Sound sediment conformed to an intermediate stage between river mouth and shelf areas. These results can be utilized to trace the influence of the Seomjin River on the so-called mud belt of Korea.

  • PDF