• Title/Summary/Keyword: Sea-sediment

Search Result 909, Processing Time 0.028 seconds

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

Mineral Distribution of the Southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis (정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층퇴적물의 광물분포 연구)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Kyung-Hoon;Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • We studied the mineral composition and mineral distribution pattern of 131 surface sediments collected at the cruise in 2000 and 2007 from Southeastern Yellow Sea, South Sea of Korea and Southern part of Jeju Island. Mineral compositions of surface sediments were determined using the quantitative X-ray diffraction analysis. Surface sediments were composed of rock forming minerals (quartz 37.4%, plagioclase 11.7%, alkali feldspar 5.5%, hornblende 3.1%), clay minerals (illite 19.2%, chlorite 4.7%, kaolinite 1.8%) and carbonate minerals (calcite 10.7%, aragonite 3.4%). Distribution of clay minerals is very similar with fine-grained sediments, and especially same as the distribution of HSMD (Hucksan Mudbelt Deposit), SSKMD (South Sea of Korea Mudbelt Deposit) and JJMD (Jeju Mudbelt Deposit). The coarse sediment seemed to be relic sediment during the last glacial maximum and mainly consisted of rock forming minerals. Whereas the fine sediments mainly composed of clay minerals. Based on the clay mineral composition, main ocean current and geographical factor, HSMD and SSKMD might have derived from the rivers around the Korean Peninsula. However, JJMD is complex mudbelt deposit, which formed by Korean rivers and oceanic sediments.

A Study on Seasonal Variation of Propagation Loss in the Yellow Sea Using Broadband Source of Low Frequency (황해에서 저주파 광대역 음원을 이용한 전달손실의 계절변동 연구)

  • 김봉채;최복경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • The sound wave in the sea propagates under the effect of water depth, sound velocity structure, sea surface and bottom roughness, and bottom sediment distribution. In particular the sound velocity structure in shallow water varies with time and space, an? the sediment distributes very variedly with place. In order to investigate the seasonal variation of low-frequency sound propagation in the Yellow Sea, the propagation experiments were conducted along the same track in the middle part of the Yellow Sea at various seasons of spring. summer, and autumn. In this paper we consider the measurement results on the propagation loss with the sound velocity structure, and investigate the seasonal variation of the propagation loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn. And the propagation losses measured in autumn were smaller than the losses in spring. The seasonal change of the propagation loss increased with the rise of sound frequency and the propagation range.

Vertical Profiles and Assessment of Trace Metals in Sediment Cores From Outer Sea of Lake Shihwa, Korea (시화호 외측 해역 주상 퇴적물 내 미량금속 수직분포 특성 및 오염도 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.71-81
    • /
    • 2013
  • Trace metal concentration in sediment cores from the outer sea of Lake Shihwa were determined to study the vertical profiles of metal concentrations and to evaluate the levels of metal contamination. Sediment pollution assessment was carried out using enrichment factor (EF) and geo-accumulation index (Igeo). The mean concentration of metals were 58.8 mg/kg for Cr, 10.3 mg/kg for Co, 22.8 mg/kg for Ni, 18.1 mg/kg for Cu, 74.0 mg/kg for Zn, 6.75 mg/kg for As, 0.14 mg/kg for Cd, 27.4 mg/kg for Pb and 0.026 mg/kg for Hg, respectively. The mean EF values for Cu, Zn, As, Cd and Hg were greater than 1.5 in sediment cores, indicating that these metals in sediments are slightly enriched by anthropogenic activities. The geo-accumulation index (Igeo) suggested unpolluted status for metals of sediments collected from outer see of Lake Shihwa. Igeo values for Cu and Hg nearby LNG station (site C, D, E) ranged from 1 to 2, indicating moderately to unpolluted pollution status for those metals. Even if the higher concentrations of trace metals nearby LNG station were observed, there is significantly positive relationship between Al and trace metals. Thus, the sediment grain size plays an important roles in influencing the distribution of trace metals in sediment cores from the outer sea of Lake Shihwa. Based on the comparison with sediment quality guidelines such as threshold effect level and probable effect level in Korea, the concentration of metals in sediments from outer sea of Lake Shihwa are likely to result in no harmful effects on sediment-dwelling organisms.

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

Distributions of Metallic Elements in the Sediment Cores from Several Shellfish-Farming Bays in Korea

  • Hwang, Dong-Woon;Yang, han-Soeb
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • We report the distribution of $^{210}$ Pb and various metallic elements (Al, Fe, Mg, Ca, Ti, Mn, Sr, Ba, Zn, V, Cr, Zr, Ni, Cu, and Y) in the sediment cores from six shellfish-farming bays in the South Sea of Korea. The $^{210Pb}$ inventories in Deukryang, Gwangyang, and Goseong Bay cores were comparable to those expected from the known fallout input. However, the $^{210}$ Pb inventories were two times higher in Jinju, Gangjin, and Hansan-Koeje Bay cores, suggesting an important role of other sources such as fluvial inputs. Based on the enrichment factor analyses, non-detrital fractions of all the measured elements were found to be insignificant. The Mn was highly enriched only in the surface sediments of the Jinju and Goseong Bay, which implies that the surface-sediment environment of these bays is efficiently oxidizing Mn remobilized from either pore waters or bottom seawaters. These data set provides the sources of heavy metal in sediment around shellfish farms and the current level of metallic elements for the future monitoring.

Clay minerals and geochemistry of continental shelf sediment around Jeju Island in the northern East China Sea (제주도 주변해역 대륙붕 퇴적물의 지화학적 조성과 점토광물 연구)

  • Youn, Jeung-Su
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Geochemical composition and clay minerals of surface and core sediments around off the Jeju Island were analyzed for identification of sediment origins. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. Smectite is highly concentrated (>8%) in the northwest near the South Yellow Sea and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe River. The relatively high abundance of kaolinite are found in northeastern nearshore area and the southwest near Changjiang estuary. It seems to be supplied from Changjiang River and the southwestern Korea rivers. The sediment accumulation rates measured by $^{210}Pb$ geochronrom mowere 0.20 to 0.54cm/mr or 0.15 to $0.42g/cm^2{\cdot}mr^{-1}$ AOJI, with decreasing rates from the west part to the east part, resulting in the supply of fine-grained suspended sediments from the Changjiang and Huanghe Rivers system. The discrimination diagrams clearly show that the sediments around Jeju Island in the northern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from Korean rivers and the Jeju Island.

  • PDF

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Change in Community Structure of Shellfish in the Reclaimed Saemangeum Area (새만금 간척사업에 따른 갯벌 패류의 군집구조 변화)

  • HWANG Sun-Do;KIM Jong-Sheek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.708-715
    • /
    • 2003
  • Species composition and distribution patterns of shellfish were investigated in Eoeun and Geojeon tidal flat located in the Saemangeum area on the west coast of Korea from May to October 2000. Nineteen species of shellfish were collected in Geojeon tidal flat. The samples in number of individuals included Umbonium thomasi $(90.0\%)$ and Mactra veneriformis $(5.0\%).$ In Eoeun tidal flat, ten species of shellfish were collected and the dominant species in number of individuals were Potamocorbula amurensis $(55.0\%)$ and U. thomasi $(18.6\%).$ These results were compared with previous studies conducted before the beginning of reclamation in Saemangeum. Compared with the results from 1988, a change In species composition was observed. Laternula flexuosa and Nuttallia olivacea appeared, while Mactra chinensis and Coelomactra antiquata disappeared in the deposition area in Geojeon tidal flat. In the erosion area of Eoeun tidal flat, M. veneriformis and Meretrix lusoria appeared, while Cyclina sinensis disappeared. Based on a cluster analysis, the shellfish community in Eoeun tidal flat was classified into three station groups based on sediment types. Geojeon tidal flat was also classified into three station groups. The distribution of shellfish in the Saemangeum area was closely related to the sediment types.

Characteristics of Metal Distribution in the Sediment in Kyeonggi Bay, Korea (경기만 퇴적물의 중금속 분포 특성)

  • Lee, Jong-Hyeon;Yi, Jung-Suk;Kim, Bum-Su;Lee, Chang-Bok;Koh, Chul-Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.103-111
    • /
    • 1998
  • This paper reports the sediment geochemistry and its relation to the grain size distribution in Kyeonggi Bay, Korea. Sediment samples were collected from 90 stations during the cruise crossing the bay in December 1995. Variables investigated were the sediment grain size, organic carbon content, and concentrations of AI, Fe, Mn, V, Co, Ni, Cr, Zn and Cu in the sediment. We followed the change in these variables by comparing the data obtained from this region in 1981. Distribution pattern of sediment grain size was modified from that in 1981 in some places. Near the Shihwa Dike which was completed in 1994, sediment had got finer grained. Sediment facies changed from fine to mixed facies near Youngjong Island where the tidal flat has been reclaimed for airport construction. Contents of organic matter and metals in the sediment were mostly dependent upon the sediment grain size, but an exception was found in the harbor area. The sediment in the Incheon North Harbor showed higher accumulation of organic matter and metals such as Ni, Cr, Zn and Cu.

  • PDF