• Title/Summary/Keyword: Sea water discharge

Search Result 280, Processing Time 0.022 seconds

Assessment of Flood Flow Conveyance for Urban Stream Using XP-SWMM (XP-SWMM을 이용한 도시하천에서의 홍수소통능력 평가)

  • Hong, Jun-Bum;Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.139-150
    • /
    • 2006
  • In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. Therefore, we have performed for structural and non-structural plans to reduce the damage from inundation. The Gulpo-cheon basin had been frequently inundated and damaged due to the water level of Han river. So, the Gulpo-cheon floodway was constructed with 20 meters width for flood control in the basin but it was not enough for our expectation and now we have a plan to expand the floodway to 80 meters. We use a XP-SWMM model developed based on EPA-SWMM version for analyzing the capacity of flood conveyance by the expansion of Gulpo-cheon floodway with the same 100 years return period design storm and the same tidal conditions of the Yellow sea. The flood conveyance after the expansion of floodway becomes three times comparing it with before the expansion. Also we simulate the flood discharge at the diversion point of Gulpo-cheon for the expanded condition of floodway and know that the discharge of about 300 m3/sec is flowing backward to the expanded floodway. Therefore we may need some kinds of hydraulic structures to prevent the back water.

Studies on Chemical and Biological Processes in the Keum River Estuary, Korea 1. The Cycle of Dissolved Inorganic Nitrogen : General Considerations (금강 하구에서의 화학적, 생물학적 제과정에 관한 연구 1. 질소계 화합물의 순환 : 전반적 고찰)

  • 김경렬;기준학
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.191-206
    • /
    • 1987
  • Keum River discharges 6.4billion tons of fresh water annually into the Yellow Sea. More than 60% of the total discharge is concentrated in summer, differentiating distinct low-discharge and high-discharge periods for the estuarine environment. The concentration of SPM(Suspended Particulate Matter) is, in general, very high, except sometime during rainy season, and turbidity maximum is often observed, especially during spring-tides(Lee and Kim, 1987).

  • PDF

The development of basic structure of jellyfish separator system for a trawl net (트롤어구용 해파리 분리 배출장치 기본 구조 개발)

  • Kim, In-Ok;An, Heui-Chun;Shin, Jong-Keun;Cha, Bong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • The purpose of this study is to develop the jellyfish separator system(JSS) for reducing fishery damage by the increase of jellyfish in the sea area of Korea in summer. First of all, to find the optimum structure of a JSS, six types of JSS in trawl fishery were designed and manufactured, the underwater shape of JSS and the separating process by JSS were observed in the circulating water channel(CWC). And the field experiments were carried out in July and September 2004 in the southern sea of Korea. For the moving path of the jellyfish model in the CWC, in case that the model was larger than the mesh size of the separator net, it was guided toward the lower part of the separator net by the guiding net and discharged through the outlet. In case that the model was smaller than the mesh size of the separator net, some models which passed through the upper part of the guiding net were smaller than the mesh size of the guiding net and discharged through the outlet and most of the model which passed through the lower part of the guiding net moved to the codend passing through the separator net. According to the field experiment result, the optimum tilt angle of separator net was inferred $20^{\circ}$ that the discharge rate of jellyfish was higher than the other tilt angle of separator net and the optimum structure of JSS was inferred GS type(consists of guiding net and separator net) that the discharge rate of jellyfish was higher than S type(consists of separator net). It was demamded to carry out more study for the countermeasure to reduce loss of fish.

Fresh water impact on chlorophyll a distribution at northeast coast of the Bay of Bengal analyzed through in-situ and satellite data

  • Mishra, R.K.;Senga, Y.;Nakata, K.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.122-125
    • /
    • 2006
  • The distribution of phytoplankton pigments were studied bimonthly at four stations from the mouth of Mahanadi River at Paradip to the 36.7km off coast in Bay of Bengal during April 2001 to December 2002. Bottom depth was shallower than 40m in all stations. The pigment concentration of Chl-a was measured. It increased from surface to bottom in the water column. The water column integrated chlorophyll-a concentration (Chl-a) varied between 6.1 and $48.5mg{\cdot}m-^2$ with peaks during monsoon period (Aug & Oct). Spatial distribution of salinity depended strongly on freshwater runoff. The salinity was 5psu at river mouth and 25.15psu at offshore in monsoon period; however it was 30psu at the river mouth in summer. We found a linear relationship between the amount of river discharge and integrated Chl-a in coastal region from 2 years observations. Extending this result, we analyzed rainfall and coastal Chl-a using satellite data. The relationship between the river discharge and monthly accumulated rainfall estimated from TRMM and others data sources was analyzed in 2001 and 2002 using Giovanni infrastructure provided by NASA. The result depended on the specified area on TRMM images; the river delta area had sharper relationship than wider rain catchments area. Moreover, the relationship between monthly averaged Chl-a derived from SeaWiFS and monthly accumulated rainfall estimated from TRMM was analyzed from 1998 to 2005. It was clear that the broom in monsoon period was strongly controlled by rainfall on river delta.

  • PDF

Evaluation of the Behavior of Dredged Materials in Ocean Dumping Area

  • Lee, Seung-Chul;Kim, Kang-Min;Kim, Hyung-Chul;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.755-762
    • /
    • 2006
  • When we consider to develop a new harbor, the most important factor, we think, is the lowest water depth of waterway and approaching channel for safe navigation of vessel. The existing harbors have been being dredged to meet the international trend of jumbo sized vessels by adopting the new design criteria. As the dredged materials over the expected at the design level were common and there are still lack of land based reclamation area, we have no choice to discharge the dredged materials in open sea area In this study, we analysed the behavior of discharged materials at the dumping area of offshore, which were collected from the dredging work at the waterway in Busan New Port. We measured the tidal currents and analyzed the waters of dumping site after the dumping work. These were used to evaluate the numerical models. Suspended Solids(SS) were introduced to the diffusion model. Because of the characteristic of the dumping site, the speed of initial diffusion and settle down of the discharged materials was so fast. Therefore, we believe that the dumped materials do not cause a significant impact to the marine environment.

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

A Study on Estimation of Submarine Groundwater Discharge Distribution area using IR camera and Field survey around Jeju island (열화상카메라와 현장조사를 이용한 제주 주변 해역의 해저 용천수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.861-866
    • /
    • 2015
  • This study was aimed to detect area of Submaine Groundwater Discharged(: SGD) around Jeju island using by remote sensing. Sea Surface Temperature(SST) was identified using IR camera on Unmaned Aerial Vehicle(UAV) at Gimnyeong port in study area. Then SGD location was detected by comparing range of SGD temperature. Generally, range of SGD temperature is distributed 15 to 17 like underground water. The result, SGD location was detected by SST distribution of Gimnyeong port recorded by IR camera in the southwest of study area.

Integrated Surface-groundwater Analysis in Jeju Island (제주 지역 지표수-지하수 연계 해석)

  • Kim, Nam-Won;Chung, II-Moon;Yoo, Sang-Yeon;Lee, Jeong-Woo;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1017-1026
    • /
    • 2009
  • In Jeju island, the surface runoff characteristics are quite different from those of inland. Most of streams show dried characteristics by means of large portion of recharge which goes to the deep aquifer. For this reason, the accurate estimation of hydrologic components by using watershed model like SWAT is very difficult. On the other hand, the integrated SWAT-MODFLOW model is able to simulate the complex runoff structure including stream-aquifer interaction, spatial-temporal groundwater recharge and so on. The comprehensive results of Pyoseon region in Jeju island show that the amount of groundwater discharge to stream is very small, but it might be added to the discharge into the sea. Statistical analysis shows that SWAT-MODFLOW's results represent better than SWAT's. Also, SWAT-MODFLOW produces a reasonable water budget which shows a quite similar pattern of observed one. This result proves that the integrated SWAT-MODFLOW can be used as a proper tool for hydrologic analysis of entire Jeju island.

Estimation of Daily Sewage and Direct Runoff for the Combined Sewer System of Gunja Experimental Drainage (군자 시험배수구역 합류식 하수관거시스템의 일일하수량 및 직접유출량 산정)

  • Kim, Chung-Soo;Han, Myoung-Sun;Kim, Hyoung-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • A localized torrential rainfall and flash floods which are more frequently occurred by extraordinary atmospheric phenomena and rising sea surface temperature require more hydrological data collecting and analysis for small watershed. Urban watershed hydrological data monitoring system is needed because of big flood potential damage and lack of urban watershed hydrological data. Therefore, Urban Flood Disaster Management Research Center operates small experimental catchments(Sinnae1, Gunja, and Children's Park) observing and analyzing hydrological data(rainfall, stage, and discharge). In this study, the discharge of combined sewage for Gunja experimental drainage is analyzed with weekly data and day of the week data. Through several analyses in analyzing the urban runoff characteristics and managing the urban sewage system, direct runoff is calibrated and verified by the estimated values of rainfall-runoff model(SWMM).

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.