• 제목/요약/키워드: Sea dyke final closure

검색결과 4건 처리시간 0.015초

조위변화에 따른 방조제 끝막이 사석단면의 침투거동 (Seepage Behavior of Sea Dyke Final Closure with Tidal Variation)

  • 유전용;오영인;김현태;정인영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.800-807
    • /
    • 2006
  • Sea dyke construction is simply defined that the cutting procedure of sea water flow. Sea dyke construction is more difficult than in-land construction because it’s placed on deep seabed and exposed sea wave attack. Especially, the final closure of sea dyke is most dangerous due to the fast velocity of tidal flow. The final closure section is consisted with vast rubble and heavy stone gabion, therefore the discharge velocity at land side of final close section is irregularly and sometime occur the fast discharge velocity. In this study, the seepage model test performed to evaluate seepage behavior with tidal variation of final closure and continuous sea dyke section such as discharge velocity, hydraulic gradient, and phreatic line. Based on the seepage model test results, the maximum discharge velocity of final closure section is 1.7m/sec. Also the local discharge velocity increment and vortex is occurred.

  • PDF

근고공 필터매트 설치에 따른 방조제 끝막이구간의 침투거동 (Seepage Behavior of Sea Dyke Final Closure with Installation of Bottom Protection Filter Mat)

  • 오영인;유전용;김현태
    • 한국지반신소재학회논문집
    • /
    • 제5권1호
    • /
    • pp.25-32
    • /
    • 2006
  • 방조제 공사는 바다를 막아 바닷물의 흐름을 차단해가는 과정으로 육상공사와는 달리 수심이 깊고 파랑이 심한 바다에서 이루어지는 공사이기 때문에 축조재료의 유실이 많고 심할 경우 방조제가 붕괴되는 위험이 큰 공사이다. 특히, 방조제의 끝막이 단면은 대규모 사석과 돌망태 등을 이용하여 시공하므로, 구성 재료가 불규칙하고 간극이 크기 때문에 일반적인 지반내의 침투흐름보다 상당히 빠른 침투가 발생된다. 본 연구에서는 방조제 끝막이 후 축조된 사석단면과 후속공정을 통하여 축조되는 방조제단면에 대한 실내 침투모형시험을 수행하여 침투거동을 예측 및 분석하였다. 다양한 조위변화를 재현하여 근고공 필터매트 시공에 따른 사석단면내의 유속변화, 침윤선 분포 등을 계측하여 침투거동을 분석하였다. 실내 침투모형시험 결과, 끝막이 사석단면의 침투유속은 최대 1.7m/sec 발생하였으며, 근고공 필터매트 시공에 따라 최대 침투유속이 23.7% 감소하였다.

  • PDF

준설해사로 충진된 바닥보호공의 형상 및 침투유속평가 (Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke)

  • 오영인;강병윤;김기년;조영권
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF

계측관리를 통한 방조제 바닥보호공의 침투거동분석 (Analysis of Seepage Behavior of Bottom Protection Layer by Filed Monitoring)

  • 강병윤;오영인;김기년;김현태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.806-813
    • /
    • 2008
  • In this research, mainly research about the structural and functional stability of sea dyke with variation of seepage condition after final closure. The piezometric head (water head in embankment) monitoring system was installed at two representative final closure section. The dredged fine sand filling condition was evaluated by in-situ test results. Also, the numerical analysis was performed to determine the permeability of bottom protection layer filled with dredged fine sand by monitoring results. According to numerical back analysis results, the coefficient of permeability of bottom protection section of is $7.6{\times}10^{-6}$ m/sec. These results are noted that the bottom protection layer of sea dyke was strong and intensively filled with dredged sand. Also, based on the seepage analysis, the seepage flux of this sea dyke was calculated about $2.42m^3$/day/m which is 29% decreased value compare with adjacent sea dyke.

  • PDF