• Title/Summary/Keyword: Sea Weather

Search Result 554, Processing Time 0.022 seconds

Research on Visibility in Tourist Attraction of Mt. Sorak Focused on Dae Chung Bong and Kwon Keum Sung (대청봉과 권금성을 중심으로한 설악산 관광명소의 시정(視程)조사)

  • 한국대기환경학회
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.289-297
    • /
    • 2001
  • From March 1998 to February 1999, we observed visibility and weather change in Dae Chung Bong and Kwon Keum Sung three times a day; at 10 Am, 1 PM and 4 PM. During research period (357 days for Kwon Keum Sung, 351 days for Dae Chung Bong), clear days were 185 days(52%) in Kwon Keum Sung and 149 days (43%) in Dae Chung Bong. Months that had many clear days in a year were December and January in both area. The rate of clear day to cloudy day in Sokcho downtown and Dae Chung Bong was 5 to 5, 4 to 6, respectively. The number of cloudy day in a year in Dae Chung Bong was 34days more than in Sokcho downtown. The visual distance in Kwon Keum Sung was 12.2km on the clear day, and 3.3km on the cloudy day. The yearly average was 7.9km. And we can see 8.9km farther on the clear day. The visual distance in Dae Chung Bong was 13.3km on the clear day, and 3.1km on the cloudy day. The yearly average was 8.1km. The visibility of clear day was 10.2km longer than that of cloudy day. The percentage to observe East Sea clearly was about 70% between December and January in both areas, and showed the highest visibility during research period. We observed Mt. Keumkang from 3 to 6 times in a month except rainy season. The yearly average visibility was 2%. If you go Mt. Serok except April, when there was yellow duet cloud from China, and rainy season (between the last of June and early of September), you can appreciate the most beautiful Mt. Sorak with Mt. Keumkang.

  • PDF

A Planning Direction of Resilient Waterfront City considering Technological and Social Meaning (기술·사회적 특성을 고려한 워터프론트 도시의 리질리언트 공간계획)

  • Lee, Kum-Jin;Choi, Jin-Hee
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • Purpose: This study aims to suggest new strategy of planning water management and land use in response to abnormal weather which allow waterfront to be the cities through the experience of Netherlands resilient project. Method: A planning direction is developed based on Dutch national resilient policy and strategy as well as resilient theory of technical and social aspects, focusing on a new waterfront development that responds to abnormal weather. Results: The water control strategy, for flexibly responding to the sea level rise and flooding caused by the climate change through the experience of Dutch resilience, is as follows: 1)Customized prevention plan according to the local property 2)Creating spatial planning by considering disaster risk level and fragility 3)Establishing urban planning by considering the flood risk level. Conclusion: A new urban development method, particularly a resilience strategy based on the waterfront space where is most vulnerable to climate change, is required to cope with the abnormal climate beyond the conventional planning.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Observation and Understanding of Snowfall Characteristics in the Yeongdong Region (영동 지역에서 강설 특성 관측 및 이해)

  • Kim, Byung-Gon;Kim, Mi-Gyeong;Kwon, Tae-Young;Park, Gyun-Myung;Han, Yun-Deok;Kim, Seung-Bum;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Yeongdong has frequently suffered from severe snowstorms, which generally give rise to societal and economic damages to the region in winter. In order to understand its mechanism, there has been a long-term measurement campaign, based on the rawinsonde measurements for every snowfall event at Gangneung since 2014. The previous observations showed that a typical heavy snowfall is generally accompanied with northerly or northeasterly flow below the snow clouds, generated by cold air outbreak over the relatively warmer East Sea. An intensive and multi-institutional measurement campaign has been launched in 2019 mainly in collaboration with Gangwon Regional Office of Meteorology and National Institute of Meteorological Studies of Korean Meteorological Administration, with a special emphasis on winter snowfall and spring windstorm altogether. The experiment spanned largely from February to April with comprehensive measurements of frequent rawinsonde measurements at a super site (Gangneung) with continuous remote sensings of wind profiler, microwave radiometers and weather radar etc. Additional measurements were added to the campaign, such as aircraft dropsonde measurements and shipboard rawinsonde soundings. One of the fruitful outcomes is, so far, to identify a couple of cold air damming occurrences, featuring lowest temperature below 1 km, which hamper the convergence zone and snow clouds from penetrating inland, and eventually make it harder to forecast snowfall in terms of its location and timing. This kind of comprehensive observation campaign with continuous remote sensings and intensive additional measurement platforms should be conducted to understand various orographic precipitation in the complex terrain like Yeongdong.

The Effect of Highland Weather and Soil Information on the Prediction of Chinese Cabbage Weight (기상 및 토양정보가 고랭지배추 단수예측에 미치는 영향)

  • Kwon, Taeyong;Kim, Rae Yong;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.701-707
    • /
    • 2019
  • Highland farming is agriculture that takes place 400 m above sea level and typically involves both low temperatures and long sunshine hours. Most highland Chinese cabbages are harvested in the Gangwon province. The Ubiquitous Sensor Network (USN) has been deployed to observe Chinese cabbages growth because of the lack of installed weather stations in the highlands. Five representative Chinese cabbage cultivation spots were selected for USN and meteorological data collection between 2015 and 2017. The purpose of this study is to develop a weight prediction model for Chinese cabbages using the meteorological and growth data that were collected one week prior. Both a regression and random forest model were considered for this study, with the regression assumptions being satisfied. The Root Mean Square Error (RMSE) was used to evaluate the predictive performance of the models. The variables influencing the weight of cabbage were the number of cabbage leaves, wind speed, precipitation and soil electrical conductivity in the regression model. In the random forest model, cabbage width, the number of cabbage leaves, soil temperature, precipitation, temperature, soil moisture at a depth of 30 cm, cabbage leaf width, soil electrical conductivity, humidity, and cabbage leaf length were screened. The RMSE of the random forest model was 265.478, a value that was relatively lower than that of the regression model (404.493); this is because the random forest model could explain nonlinearity.

Analysis of PM2.5 Case Study Burden at Chungju City (충주시 미세입자 (PM2.5) 농도특성에 대한 사례 연구)

  • Lee, Sung-Hee;Kang, Byung-Wook;Yeon, Ik-Jun;Choi, Jun-Rack;Park, Hyun-Pill;Park, Sang-Chan;Lee, Hak Sung;Cho, Byung-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.595-605
    • /
    • 2012
  • Fine particles ($PM_{2.5}$) were collected and analyzed from April 2010 through January 2011 in Chungju to investigate the characteristics of $PM_{2.5}$ and its ionic species. The annual mean concentrations of $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ in the particulate phase were 40.84, 7.61, 7.14 and $3.74{\mu}g/m^3$, respectively. $PM_{2.5}$ concentrations were higher in fall and spring than in winter and summer. The elevated concentrations episodes are the main factor that enhanced the $PM_{2.5}$ concentrations in the fall. Among the major ionic species ${SO_4}^{2-}$ showed the highest concentration, followed by $NO_3{^-}$ and $NH_4{^+}$, $NO_3^-$ exhibited higher concentrations during the winter, but ${SO_4}^{2-}$ and $NH_4{^+}$ were not showed seasonal variation. The high correlations were found among $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$ and $NH_4{^+}$ during all seasons except for spring. The evaluation of backward trajectories and meteorological records show that the highest $PM_{2.5}$ concentration levels occurred during W-NW weather conditions, which influenced by the emission sources of China area. The low pollution levels generally occurred during E-S weather conditions, which influenced by the East Sea and south of the Yellow Sea. The elevated $PM_{2.5}$ mass concentrations arouse the concentration of $NO_3{^-}$, but no effects on ${SO_4}^{2-}$ and $NH_4{^+}$.

Climatological Boundary and Characteristics of Coastal Zone over the Southwestern Korean peninsula (한반도 남서해안의 기후학적 연안지대의 경계와 특징)

  • 이영선;하경자;전은희
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.137-152
    • /
    • 2004
  • The climatological characteristics of coastal zone over the southwestern coast of Korea peninsula were investigated using the data observed by AWS (automatic weather system) and 4 buoy points. Coastal zone is climatologically defined as the region bounded by the distinct contrast of temperature gradient and wind speed across coastline. In the southwest of peninsula four cross-lines consisted of AWS aligned with each buoy were selected as Geojedo buoy line, Geomundo buoy line, Chilbaldo buoy line and Dukjukdo buoy line. Analysis on the diurnal cycle and intra-month variation, monthly mean and maximum value, the temperature gradient with distance between buoy and each station and the accumulative frequency of wind speed were applied to find out the characteristics and the range of coast zone. The maximum ranges of coastal zone vary from offshore to Sanglim (about 34 km distance from coastline) for Geojedo buoy line, to Sunchun (about 52 km) for Geo-mundo buoy line, to Jaeundo (about 27 km) for chilbaldo buoy line and to Yongin (about 65 km) for Dukjukdo buoy line. The modification of coastal zone according to synoptic flow was investigated for the onshore, off-shore and calm cases. The ranges of coastal zone are significantly changed with the distance between 65∼90 km for the case of onshore. In addition, we tried to find out the variation of the wind and temperature and the wind ratio of wind speed at ocean to land stations along Geojedo buoy line during 12∼13 Sep. 2003 affected by typhoon (MAEMI).

Local Wind Field Simulation over Coastal Areas Using Windprofiler Data (윈드프로파일러 자료를 이용한 연안 지역 국지 바람장 모의)

  • Kim, Min-Seong;Kim, Kwang-Ho;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.195-204
    • /
    • 2016
  • In this paper, the applicability and usefulness of windprofiler input data were investigated to generate three dimensional wind field. A logical diagnostic model CALMET with windprofiler data at ten sites and with weather forecasting model WRF output was evaluated by statistically comparing with the radiosonde data at eight sites. The horizontal wind speed from CALMET simulated with hourly windprofiler data is in good agreement with radiosonde observations within 1.5 m/s of the root mean square error, especially local circulation of wind such as sea breeze over the coastal region. The root mean square error of wind direction ranged $50^{\circ}{\sim}70^{\circ}$ is due to the wind direction error from the windprofiler polluted by ground clutters. Since the exact wind can be produced quickly and accurately in most of the altitude with windprofiler data on CALMET, we expect the method presented in this study to be useful for the monitoring of safe environment as well as weather in the coastal zone.

Analysis of Seasonal Characteristics about Long-Range Transport and Deposition of Sulfur (황(S)의 장거리 이동 및 침적량에 대한 계절별 특성 분석)

  • Hong, Sung-Chul;Lee, Jae-Bum;Moon, Kyung-Jung;Song, Chang-Keun;Bang, Cheol-Han;Choi, Jin-Young;Kim, Jeong-Soo;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.34-47
    • /
    • 2010
  • Long-range transport of air pollutants was simulated using Comprehensive Acid Deposition Model (CADM) and Yonsei University-Sulfuric Acid Deposition Model (YU-SADM). For the simulation, weather patterns that represent the four seasons were derived through a clustering analysis with 5-years of meteorological data. The simulation result showed that in spring, influenced by strong low pressure from China, air pollutants of moved to the Korean Peninsula. In summer, humid air moved into the Korean Peninsula across the Yellow Sea while the north pacific high pressure extended, making the concentration of air pollutants lower than that in the other seasons. In autumn, air pollutants were transported by the northwest wind caused by the movement of high pressure over the Yellow Sea, while in winter air pollutants were influenced by northwest winds from continental highs. The amount of air pollutants in each season showed that high amount of pollutants were transported in winter due to the strong northwest wind. The in-flows were 3 to 8 times higher than those of the other seasons, and out-flows were about as twice as high. The amount of wet deposition in summer and autumn increased significantly compared to the amount in the other seasons due to the increase of rainfall. Source-receptor relationship analysis for sulfur showed that 70 to 91 precent of the total deposition came from the self-contribution by the Korean Peninsula. In winter, contribution from China was about 25 percent of the total deposition which was higher amount than any other season.

An Analysis on the Characteristics of Wind Distribution in the Coast of Busan Using AWS Data (AWS 데이터를 이용한 부산 해안의 바람분포 특성 해석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.549-554
    • /
    • 2009
  • Wind velocity and wind direction are very important in the viewpoint of ship's safety and stability of port structure. The characteristics of wind distribution in the coast of Busan are analyzed for 10 years from 1997 to 2006 using AWS(Automatic Weather System) data. The characteristics of wind distribution of Miryang, is not affected by the land and sea breeze are also examined to understand clearly the characteristics of wind distribution in the coast of Busan. The mean wind velocity in the coast of Busan is stronger than that of Miryang. The mean wind velocitie at Youngdo and Gadukdo stations of Busan are stronger about 2.0 times than those at IlGwang, Haeundae and Daeyeon stations. The correlation a states show that the variation tendencies of monthly mean wind velocitie in the coast of Busan are very similar. The maximum monthly mean velocitie in the coast of Busan are recorded in September. This re ult is closely related to the influence of typhoon. The maximum instantaneous wind velocitie are also strong at Youngdo and Gadukdo stations and the peaks of maximum instantaneous wind $velocit^9$ are observed mainly from August to September. In the coast of Busan, the SW'ly-NNE'ly wind are prevailing in the winter and the SW'ly and NE'ly wind are predomi snt in the spring. w that the vs of wind direction in the summer and athumn are similar with those in the spring and winter, respectively.