• Title/Summary/Keyword: Sea Slaters

Search Result 2, Processing Time 0.015 seconds

Two Genetic Lineages of Sea Slaters, Ligia (Crustacea: Isopoda) in South Korea: a Population Genetic Approach

  • Jung, Jongwoo;Eo, Hae-Seok;Rho, Hyun Soo;Kim, Won
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.523-530
    • /
    • 2008
  • In this study, the species composition and population genetic properties of the sea slater, Ligia, in South Korea were investigated using mitochondrial and nuclear gene sequences. Two groups of sea slaters, genetically isolated from each other, a Western Group (WG) and an Eastern Group (EG) were identified. These groups exhibited considerable genetic divergence from Ligia exotica, previously recorded as a species inhabiting this country. These results indicate that there may be two species of Ligia in South Korea, but there is a small probability that both groups are L. exotica. A comparison of their genetic properties indicates that WG has a higher effective population size than EG, and that EG may have experienced a recent expansion, implying that it has a shorter history in South Korea than WG. These findings suggest that the South Korean sea slater populations may have been established as a result of several colonization events that can be traced on a continental scale by phylogeographic studies of sea slaters.

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Kang, Seunghyun;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.