• Title/Summary/Keyword: Sea Field

Search Result 1,295, Processing Time 0.03 seconds

History and Characteristics of Tidal Sand Ridges in Kyeonggi Bay, Korea (경기만에 발단한 조류성사퇴의 역사 및 특성)

  • 방효기;이호영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.278-286
    • /
    • 1994
  • Tidal sand ridges, which develop in Kyeonggi Bay generally parallel to the direction of tidal current on the sea bottom are also well shown in seismic profiles, surface and core samples were obtained from sand ridge field near the Palmi Do for the study of origin and sedimentary environments of these sand ridges. Sand ridge field near Palmi Do can be divided into 3 seismic units(unit A, B, C), and each unit has one sand ridge(ridge A, B, C), Ridge A that shows clinoform prograding southeastwards is generally parallel with tidal current trending northeast to southwest(40$^{\circ}$). It means that sand ridge is migrating to southward. Unit B includes a sand ridge and a channel fill structure in seismic profiles. Compared with ridge A, ridge B has similar direction, magnitude and internal reflectors. So ridge B developed in the similar sedimentary environments to ridge A about 10 m lower than present sea level. As the rise of sea level, channel fill structure formed as the deposit of fine sediments with the shape of conformable bedding or horizontal bedding.

  • PDF

Remote Sensing of Surface Films as a Tool for the Study of Oceanic Dynamic Processes

  • Mitnik, Leonid;Dubina, Vyacheslav;Konstantinov, Oleg;Fischenko, Vitaly;Darkin, Denis
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Biogenic surface films, which are often present in coastal areas, may enhance the signatures of hydrodynamic processes in microwave, optical, and infrared imagery. We analyzed ERS-1/2 Synthetic Aperture Radar (SAR) and Envisat Advanced Synthetic Aperture Radar (ASAR) images taken over the Japan/East Sea (JES). We focused on the appearance of the contrast SAR signatures, particularly the dark features of different scales caused by various oceanic and atmospheric phenomena. Spiral eddies of different scales were detected through surface film patterns both near the coast and in the open regions of the JES in warm and cold seasons. During field experiments carried out at the Pacific Oceanological Institute (POI) Marine Station 'Cape Shults' in Peter the Great Bay, the sea surface roughness characteristics were measured during the day and night using a developed polarization spectrophotometer and various digital cameras and systems of floats. The velocity of natural and artificial slicks was estimated using video and ADCP time series of tracers deployed on the sea surface. The slopes of gravity-capillary wave power spectra varied between .4 and .5. Surface currents in the natural and artificial slicks increased with the distance from the coast, varying between 4 and 40 cm/s. The contrast of biogenic and anthropogenic slicks detected on vertical and horizontal polarization images against the background varied over a wide range. SAR images and ancillary satellite and field data were processed and analyzed using specialized GIS for marine coastal areas.

Morphological, molecular, and chromosomal identification of dwarf haploid parthenosporophytes of Tauya basicrassa (Phaeophyceae, Laminariales) from the Sea of Okhotsk

  • Klochkova, Tatyana A.;Klochkova, Nina G.;Yotsukura, Norishige;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • Morphological, molecular and chromosomal studies were carried out on Tauya basicrassa, an endemic kelp species distributed on the northern continental coast of the Sea of Okhotsk in Russia. The sporophytes of T. basicrassa grow up to 3-6 m long, 1.8-2.2 m wide, and 6.5-7 kg wet weight. The thallus has a blade with very thick narrow basal portion and thinner and much broader upper portion, which usually splits into 3 bullated lobes. A dwarf laminariacean alga, which did not show any morphological similarity to the other species of the order Laminariales, was found from the same locality. The blade of this alga is thin and soft, reached 26-34 cm long and 6-6.5 cm wide and had 4 longitudinal rows of bullations that covered the entire blade. Molecular analysis showed that the dwarf alga has 100% sequence identity in plastid-encoded RuBisCo spacer, mitochondrial cytochrome c oxidase subunit 1 and nuclear-encoded rDNA genes with normal sporophytes of T. basicrassa, indicating that they are different life forms of the same species. Fluorescent DAPI staining showed that the nucleus in the normal sporophyte was 50-65% larger than those of the dwarf ones. Chromosome count using acetocarmine staining showed n = ca. 20 for the normal sporophytes of T. basicrassa and n = ca. 10 for the dwarf one. These results suggest that the dwarf thallus is a haploid parthenosporophyte of T. basicrassa, which developed in nature. This is the first evidence of parthenosporophytes of the laminariacean algae occurring naturally in the field.

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea (동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증)

  • Kim, Yun-Jung;Kim, Hyun-Cheol;Son, Young-Baek;Park, Mi-Ok;Shin, Woo-Chur;Kang, Sung-Won;Rho, Tae-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.421-434
    • /
    • 2012
  • Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).

Seismic Data Processing For Gas Hydrate using Geobit (Geobit을 이용한 가스 하이드레이트 탐사자료 처리)

  • Jang Seong-Hyung;Suh Sang-Yong;Chung Bu-Heung;Ryu Byung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.184-190
    • /
    • 1999
  • A study of gas hydrate is a worldwide popular interesting subject as a potential energy source. A seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. General indicators of natural submarine gas hydrates in seismic data is commonly inferred from the BSR (Bottom Simulating Reflection) that occurred parallel to the see floor, amplitude decrease at the top of the BSR, amplitude Blanking at the bottom of the BSR, decrease of the interval velocity, and the reflection phase reversal at the BSR. So the seismic data processing for detecting gas hydrates indicators is required the true amplitude recovery processing, a accurate velocity analysis and the AVO (Amplitude Variation with Offset) analysis. In this paper, we had processed the field data to detect the gas hydrate indicators, which had been acquired over the East sea in 1998. Applied processing modules are spherical divergence, band pass filtering, CDP sorting and accurate velocity analysis. The AVO analysis was excluded, since this field data had too short offset to apply the AVO analysis. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). This is the method which calculate the velocity spectrum by iterative and interactive. With XVA, we could determine accurate stacking velocity. Geobit 2.9.5 developed by the KIGAM was used for processing data. Processing results say that the BSR occurred parallel to the sea floor were shown at $367\~477m$ depths (two way travel time about 1800 ms) from the sea floor through shot point 1650-1900, the interval velocity decrease around BSR and the reflection phase reversal corresponding to the reflection at the sea floor.

  • PDF

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables (빙권요소를 활용한 겨울철 역학 계절예측 시스템의 개발 및 검증)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Ok, Jung;Jeong, Hyun-Sook;Kim, Baek-Min
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2015
  • A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.

The Development of Monitoring Method of Attached Micro-algae Using Artificial Substrates in Coastal Water - Ecological Risk Assessments for Oil Pollutant - (연안해역에서 인공부착기질을 이용한 부착미세조류 모니터링기법 - 유류오염의 생태위해성 평가적용 -)

  • Baek, Seung-Ho;Son, Moon-Ho;Jung, Seung-Won;Kang, Jung-Hoon;Kim, Young-Ok;Shim, Won-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2012
  • Spills of $M/V$ Hebei Spirit on $7^{th}$ December 2007 caused a seriously damage to the ecosystem of Korean coast. Of these, microbial communities (i.e., attached benthic micro-algae) were reported to be sentive to the environmental change so it can be used for ecological risk assessment. Our experiment was designed to examine the ecological risk assessments for oil pollutant using benthic attached algal community on the artificial substrates of acrylic plates. Field monitoring in the culture system was conducted in Jangmok Bay. The abundances of attached micro-algae on artificial substrates gradually increased with increasing of sampling times. Among them, diatoms were the most important colonizer of coastal water, with the genera $Cylindrotheca$ and $Navicular$ most abundant. In particular, developed the culture system has correctly measured qualitative and quantitative abundance of attached micro-algae because same acrylic plates as artificial substrates were used. Thus, this culture system may be directly applied to the ecological risk experiments of microbial community structure from oil pollutants.

Bycatch and discards of the whelk trap in the Uljin waters, East Sea (동해안 울진해역 원통형과 장구형 고둥통발의 혼획 및 투기 실태)

  • An, Heui-Chun;Bae, Jae-Hyun;Park, Jong-Myung;Hong, Sung-Eic;Kim, Seong-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.520-529
    • /
    • 2014
  • Experiment was set up to analyze bycatch and discards situation including snow crap Chionoecetes opilio of whelk trap. Four types of trap were used: drum type trap with PE net; drum type trap with PBS net; cylinder type trap with PE net; and cylinder type net with PBS net. Three funnels were attached in drum type trap and two funnels were used in cylinder type trap. A fleet of traps was consisted with one hundred traps. 25 traps of each type were set on a line in repeated sequence. Field experiments were conducted with 6 fishing operations in the Uljin waters, East Sea in July 2014. Catch of target whelks were 173,261 g and catch rate was 48.7% of total catch, while bycatch were 182,571 g, 51.3% of tatal catch. The catch rate of bycatch was 2.6% higher than that of target catch. Bycatch weight of snow crap was the highest as 142,987 g and formed about 40.2% of total catch, followed giant octopus, Enteroctopus dofleini, 31,762 g (8.9%). Bycatch rate of cylinder type trap was 2.3 times higher than that of drum type trap. Discard rate (discard/(discard+landing)) was 43.6%. Discard rate was the highest at cylinder type trap with PBS net as 63.1%, followed cylinder type trap with PE net as 47.9%, drum type trap with PE net as 33.4%, the lowest at drum type trap with PBS net as 22.1%.