• Title/Summary/Keyword: Scrubber efficiency

Search Result 114, Processing Time 0.023 seconds

Effect of Brush Treatment and Brush Contact Sequence on Cross Contaminated Defects during CMP in-situ Cleaning

  • Kim, Hong Jin
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Chemical mechanical polishing (CMP) is one of the most important processes for enabling sub-14 nm semiconductor manufacturing. Moreover, post-CMP defect control is a key process parameter for the purpose of yield enhancement and device reliability. Due to the complexity of device with sub-14 nm node structure, CMP-induced defects need to be fixed in the CMP in-situ cleaning module instead of during post ex-situ wet cleaning. Therefore, post-CMP in-situ cleaning optimization and cleaning efficiency improvement play a pivotal role in post-CMP defect control. CMP in-situ cleaning module normally consists of megasonic and brush scrubber processes. And there has been an increasing effort for the optimization of cleaning chemistry and brush scrubber cleaning in the CMP cleaning module. Although there have been many studies conducted on improving particle removal efficiency by brush cleaning, these studies do not consider the effects of brush contamination. Depending on the process condition and brush condition, brush cross contamination effects significantly influence post-CMP cleaning defects. This study investigates brush cross contamination effects in the CMP in-situ cleaning module by conducting experiments using 300mm tetraethyl orthosilicate (TEOS) blanket wafers. This study also explores brush pre-treatment in the CMP tool and proposes recipe effects, and critical process parameters for optimized CMP in-situ cleaning process through experimental results.

Complex Mal-odor Treatment of Foodwaste with Micro-bubble generated from Enhanced Wet Scrubber (습식세정장치에서 발생되는 마이크로버블을 이용한 음식물쓰레기 발생 복합악취 처리)

  • Kim, Ye-Jin;Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • The objective of this work was to treat complex mal-odor of food waste with micro-bubbles from enhanced wet scrubber system, where the pilot plant was operated. Micro bubbles from the enhanced reactor of venturi scrubber were successfully generated through the air atomizing process with high velocity more than 60 m/sec and played an important role in the removal of mal-odor. Mal-odor was effectively changed into the micro-bubble and treated with washing chemicals together. Through establishing two series connection of the reactors, 85.2 % removal efficiency of complex mal-odor was obtained in case of average 940 times of input air. 0.35 kg/hr of sulfuric acid, 0.188 kg/hr of sodium hydroxide and 0.043 kg/hr of hypochlorite were injected for chemical washing.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.

Evaluation of CO2 Removal Efficiency in Liquor plant by scrubber (스크러버를 이용한 주류공정 내 고농도 이산화탄소 제거효율 평가)

  • Park, Il Gun;Park, Yeong Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.986-994
    • /
    • 2017
  • In this paper, $CO_2$ absorption of scrubber was tested for removal of high concentration $CO_2$. Liquid to gas ratio($18L/m^3$) and Superficial velocity(0.14 m/s) was determined through Lab-scale test. As flow rates increase 1, 2, 3, 4 and $5m^3/min$, $CO_2$ removal efficiency decrease 98.47%, 96.46%, 92.95%, 89.71% and 85.49%. Also, the scrubber operation made energy improvement(5.4%), energy saving(11.5 TOE/year) and greenhouse gases reduction(6.5 TC/year).

Collection characteristics of wet-type multi-staged impaction system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 습식 다단 임팩션 시스템의 집진특성)

  • YOA, Seok-Jun;KWON, Jun-Hyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.248-256
    • /
    • 2016
  • The main purpose of this paper was to analyze the removal characteristics of gas/particulate phase pollutants for the present system. Experimentally, we performed to estimate the pressure drop and air pollution removal efficiency with physical variables such as stage number, tube velocity, tube diameter, water spray ($NH_4OH$), and so on. It was concluded that the pressure drop was shown below $111mmH_2O$ lower than that of the existing scrubber (centrifugal spray chamber, over 200 mmAq) at inlet velocity 3.46 m/s and 5 stage. The particular removal efficiency of this system was to be significantly higher at 99.8% in comparison with that of the existing scrubber for 5 stage, inlet velocity 3.46 m/s and $NH_4OH$ (aq) 300 mL/min. It was estimated that the removal efficiencies of $SO_2$ and $NO_2$ were 80% and 70% at system inlet velocity 2.07 m/s and $NH_4OH$ (aq) 300 mL/min respectively. Additionally, the present collection system was to be considered as an effective compact system for simultaneous removal of air pollutants (gas/particulate) due to much higher removal efficiency and appropriate pressure drop without a demister.

The Numerical Study on Effect of the Droplet Sizes on Internal Mass Transfer in the Spray Type Scrubber (분무형 스크러버에 내에서 액적크기에 따른 물질전달에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • As regional air pollution gets worse by the sulfur oxides emitted from various types of vessels passing through the many countries, the International Maritime Organization establishes the emission control areas and regulates sulfur dioxide in those areas. In order to satisfy these regional regulations, the fuel selection method and the exhaust gas post-treatment device are applied to the ships. Due to the economic reasons, the post-treatment method of exhaust gas for reducing the amount of sulfur oxides discharged is mainly preferred. The scrubber which is dominantly used in the ships are the spray type system where the sprayed liquid drops used for capturing the soluble sulfur dioxides in the exhaust gas. The performance of the spray type system depends on the size distribution of the sprayed droplets. In order to evaluate this performance, we designed counterflow type scrubber and cyclone scrubber and evaluated the desulfurization efficiency and the amount of droplet evaporation according to the size of each droplet by using computational fluid dynamics. The Eulerian-Eulerian analysis method was used because the scrubber had a gas-liquid two-phase flow inside the scrubber. When the diameter of the droplet was $100{\mu}m$, $300{\mu}m$, $500{\mu}m$ and $700{\mu}m$. As a result, both of scrubbers showed high desulfurization efficiency and low evaporation amount at $500{\mu}m$ and $700{\mu}m$.

Enhancement of HF Gas Removal Efficiency of a Scrubber in Semiconductor Manufacturing Process by using ANCOVA Technique (ANCOVA를 이용한 반도체공정 스크러버 HF 가스 제거 개선)

  • Kim, S.J.;Lee, M.;Xu, J.;Lim, S.;Lee, H.;Koo, J.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • To comply with the regulation of the reinforcing Clean Air Conservation Act, it is necessary for the semiconductor manufacturers to develop effective low-concentration acid gas abatement system to treat the flue gas. The low-concentration acid gas was found to be harder to deal with than the high-concentration one. In this study, the effect of various potential treatments such as air-assist nozzle spraying, magnetizing the scrubbing water, and adding surfactants to spraying and scrubbing water were investigate through the application of the statistical ANCOVA method, which was proved to be very useful tool when the inlet concentration of acid gas could not be controlled precisely and it affected the removal efficiency of the abatement system.

Study of ammonia-gas removal′s characteristics using wood-material (침엽수를 이용한 암모니아 가스 제거효율 연구)

  • Park Young Gyu
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.7-14
    • /
    • 2004
  • This paper was investigated to clarify the possibility of ammonia-gas removal by essential oil. First of all, the chemical analysis was performed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil react with ammonia by neutralization and their reaction mechanism was elucidated. Based on their chemical neutralized reaction, the removal efficiencies of ammonia gas were studied to derive the optimal conditions in the scrubber tower such as optimal temperature and pH. The experimental result shows that the removal efficiency of ammonia gas was achieved over 80 % by the misty aerosol dispersion of scrubber tower.

Mass Transfer of Sulfur Dioxide in Flue Gas Desulfurization Process Utilizing a Jet Bubbling Scrubber (기포분사반응기를 사용한 배연탈황공정의 아황산가스 물질전달)

  • 동종인;나진균;홍지형
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.262-268
    • /
    • 1992
  • The trend of international concerns on environmental conservation and domestic demand of ambient air quality improvement, specially on sulfur dioxide level has resulted in the establishment of mid-term strategy of environmental improvement and stepwise strengthening of emission regulations in this decade in Korea. Development of flue gas desulfurization(FGD) process is becoming an essential task to be accomplished especially for the power plants and large industrial facilities. This study is an initial stage researc focusing on the mass transfer principles in wet type FGD process and the effects of operating variables of a jet bubbling scrubber utilizing limestone slurry on sulfur dioxide removal efficiency. Experimental results showed this type of scrubbing system has some advantages in terms of mass transfer mechanism and removal efficiency. More rigorous research is needed for the reaction system and the comparison with existing FGD processess for the possible development of a process which is compatative in view of installation cost and treatment of by-products.

  • PDF