• Title/Summary/Keyword: Screws

Search Result 647, Processing Time 0.023 seconds

Study of Production and Material Properties of Micro Screw Using SWCH18A and SUS XM7 Materials (SWCH18A 와 SUS XM7 을 적용한 초소형 나사제작 및 물성분석에 관한 연구)

  • Ra, Seung-Woo;Kim, In-Rak;Hwang, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1043-1048
    • /
    • 2014
  • As micro screws feature reduced screw lengths and pitches, the resulting clamping force diminishes because of the reduced length of the actual joints. The elements of the clamping force are material, geometry, and friction. We studied the shrinking size of the screw and the methods to improve the clamping force by changing the material. We developed a micro screw using SWCH18A and SUS XM7 materials, and obtained the precision and thickness of the pitch through three-dimensional measurement. We also measured the external resistance of the micro screw by applying the Vicker's hardness test and conducted a break surface analysis using a break torque test and SEM for obtaining the break characteristics.

A Study of Structural Performance of Self-Drilling Screw Connections (직결나사 연결 접합부에 관한 구조성능평가 연구)

  • Park, K.Y.;Jeon, S.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.543-553
    • /
    • 2013
  • As the deep deck plate has the shape of open cross section, It can cause structural problems such as bending torsions due to instability of the section. There are a number of fasteners types which are frequently used on light gage steel diaphragms such as bolts, rivets, welds, and screws. In this study, the structural capacity of the self drilling screw connection between the deep deck and the reinforced cap plate was evaluated by experimental variables such as the arrangement method, numbers of screw, pitch of screw, and head plate thickness.

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

  • Chun, Kwonsoo;Yang, Inchul;Kim, Namhoon;Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.5
    • /
    • pp.412-418
    • /
    • 2015
  • Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

A Case of Pedicle Screw Loosening Treated by Modified Transpedicular Screw Augmentation with Polymethylmethacrylate

  • Kang, Suk-Hyung;Kim, Kyoung-Tae;Park, Seung-Won;Kim, Young-Baeg
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.75-78
    • /
    • 2011
  • We report a case of pedicle screw loosening treated by modified transpedicular screw augmentation technique using polymethylmethacrylate(PMMA), which used the anchoring effect of hardened PMMA. A 56-year-old man who had an L3/4/5 fusion operation 3 years ago complained of continuous low back pain after this operation. The computerized tomography showed a radiolucent halo around the pedicle screw at L5. We augmented the L5 pedicle screw with modified pedicle screw augmentation technique using PMMA and performed an L3/4/5 pedicle screw fixation without hook or operation field extension. This modified technique is a kind of transpedicular stiffness augmentation using PMMA for the dead space around the loosed screw. After filling the dead space with 1-2 cc of PMMA, we inserted a small screw. Once the PMMA hardened, we removed the small screw and inserted a thicker screw along the existing screw threading to improve the pedicle screws' pullout strength. At 10 months' follow-up, x-ray showed strong fusion of L3/4/5. The visual analogue scale (VAS) of his back pain was improved from 9 to 5. This modified transpedicular screw augmentation with PMMA using anchoring effect is a Simple and effective surgical technique for pedicle screw loosening. However, clinical analyses of long-term follow-up and biomechanical studies are needed.

Comparison of Primary Stability of Different Femoral Fixation Techniques in Anterior Cruciate Ligament Reconstruction (전 십자 인대 재건술에서 대퇴골측 고정 방법의 초기 안정성의 비교)

  • Song, Eun-Kyoo;Lee, Keun-Bae;Lee, Moon
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.1
    • /
    • pp.85-92
    • /
    • 1998
  • Various methods for fixation of graft have been widely used for reconstruction of anterior cruciate ligament. However, the biomechanical strength of each fixation techniques are not fully understood. The purpose of this study is to compare the pull out strength of different fixation techniques which is probably the most important factor for the success at the initial stage of healing. Biomechanical test was carried out to measure and compare the pull out tensile strength of five different fixation techniques in 35 pig(Yorkshire) knees. ANOVA and Duncan multiple comparison test was applied for statistical analysis. In the two fixation techniques with bone patellar tendon bone graft, the mean maximum tensile strength was $1333.4{\pm}148.5N$ with titanium interference screw, while it was $1310.1{\pm}168.9N$ with biodegradable interference screw. The failure mode were pulled out of bone plugs from the femoral tunnel in majority cases. In the fixations with hamstring tendon, the mean maximum tensile strength were $1405.9{\pm}135.1N$ with SemiFix screw, $820.3{\pm}104.5N$ with biodegradable interference screw, and $682.1{\pm}54.2N$ with Endobutton. The mode of failure was variable in each technique. The tendon was pulled out from the tunnel in biodegradable interference screw fixation, the screw was bent in the SemiFix system, and the polyester tape were ruptured or the buttons were pulled into tunnel in Endobutton fixation. The mean maximum tensile strength of two interference screws with bone patellar tendon bone was statistically comparable to that of SemiFix with hamstring tendon. However biodegradable interference screw and Endobutton with hamstring tendon showed weaker maximum tensile strength than above three fixation techniques (P<0.05).

  • PDF

Technical Modification and Comparison of Results with Hirabayashi's Open-door Laminoplasty

  • Kim, Young-Sung;Yoon, Seung-Hwan;Park, Hyung-Chun;Park, Chong-Oon;Park, Hyeon-Seon;Hyun, Dong-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.168-172
    • /
    • 2007
  • Objective : Hirabayashi's open-door laminoplasty is a good procedure to use to treat patients with myelopathy of the cervical spine; however, the authors have experienced problems in maintaining an open-window in cervical spines after the surgery. The authors developed a modified method of the expanded open-door laminoplasty and compared the radiological and clinical results with those of the classical method. Methods : In the modified method, wiring fixation with lateral mass screws on the contra lateral-side instead of fixing the paraspinal muscle or facet joint, as in the classical methods, was used in the open window of the cervical spine. Fifteen patients with cervical myelopathy were treated using the classical method and 12 patients were treated using the modified method. Preoperative and postoperative clinical conditions were assessed according to the Japanese Orthopedic Association (JOA) score. The radiological results were compared with the preoperative and postoperative computed tomography (CT) findings. Results : In both methods, the clinical results revealed a significant improvement in neurological function (p<0.001). Image analysis revealed that the cervical canals were continuously expanded in patients treated using the modified methods. However, authors have observed restenosis during the follow-up periods in 4 patients treated using the original method. Progression to deformity and spinal instability were not observed in any of the patients in the radiological results. Conclusion : Although analysis with a larger population and a longer follow-up period needs to be undertaken, our modified open-door laminoplasty has shown an advantage in better maintaining an open window in comparison with the Hirabayashi's open-door laminoplasty.

Short-segment Pedicle Instrumentation of Thoracolumbar Burst-compression Fractures; Short Term Follow-up Results

  • Shin, Tae-Sob;Kim, Hyun-Woo;Park, Keung-Suk;Kim, Jae-Myung;Jung, Chul-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.265-270
    • /
    • 2007
  • Objective : The current literature implies that the use of short-segment pedicle screw fixation for spinal fractures is dangerous and inappropriate because of its high failure rate, but favorable results have been reported. The purpose of this study is to report the short term results of thoracolumbar burst and compression fractures treated with short-segment pedicle instrumentation. Methods : A retrospective review of all surgically managed thoracolumbar fractures during six years were performed. The 19 surgically managed patients were instrumented by the short-segment technique. Patients' charts, operation notes, preoperative and postoperative radiographs (sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis, regional kyphosis), computed tomography scans, neurological findings (Frankel functional classification), and follow-up records up to 12-month follow-up were reviewed. Results : No patients showed an increase in neurological deficit. A statistically significant difference existed between the patients preoperative, postoperative and follow-up sagittal index, sagittal plane kyphosis, anterior body compression, vertebral kyphosis and regional kyphosis. One screw pullout resulted in kyphotic angulation, one screw was misplaced and one patient suffered angulation of the proximal segment on follow-up, but these findings were not related to the radiographic findings. Significant bending of screws or hardware breakage were not encountered. Conclusion : Although long term follow-up evaluation needs to verified, the short term follow-up results suggest a favorable outcome for short-segment instrumentation. When applied to patients with isolated spinal fractures who were cooperative with 3-4 months of spinal bracing, short-segment pedicle screw fixation using the posterior approach seems to provide satisfactory result.

Radiologic Evaluation of Proper Pedicle Screw Placement after Pedicle Screw Fixation in Degenerative Lumbar Disc Disease

  • Ju, Sun-Min;Kim, Young-Soo;Kim, Sung-Bum;Ko, Yong;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.4
    • /
    • pp.265-268
    • /
    • 2005
  • Objective : With the increasing popularity of pedicle screw fixation devices for several indications, the safety and reliability of screw insertion in the small pedicle has become a major issue. Many studies have investigated the accuracy of screw placement after pedicle screw fixation using various method. The reported displacement rates have been very different. The purpose of the study is to investigate the proper placement of pedicle screw insertion in the lumbar spine on 26 consecutive patients. Methods : Between September and December 2003, 26 consecutive patients [16women and 10men] were analyzed after transpedicular screw fixation of the lumbar and lumbosacral spine. After pedicle screw fixation in this study, 2-mm slices of CT scan were performed in all patients to detect caudal and cranial deviation of screw and medial and lateral deviation. Pedcile screw placement related complication was evaluated clinically. Results : A total of 144 inserted pedicle were analyzed in 26patients, and 58pedicle screws [40.3%] were detected to be improper placement. There were 14level [9.0%] of caudal or cranial deviation and 44level [30.6%] of medial or lateral deviation to the pedicle. Extra-pedicle placement was found on 4levels [2.7%] with only lease of neurologic injury. Conclusion : Proper screw placement, though complication rate is low, is important not only for clinical symptom but also for biomechanics. Further study for screw placement related biomechanical changes is needed.

Long-term Follow-up Results of Short-segment Posterior Screw Fixation for Thoracolumbar Burst Fractures

  • Lee, Yoon-Soo;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.6
    • /
    • pp.416-421
    • /
    • 2005
  • Objective: Despite general agreement on the goals of surgical treatment in thoracolumbar burst fractures, considerable controversy exists regarding the choice of operative techniques. This study is to evaluate the efficacy of short-segment fixation for thoracolumbar burst fractures after long-term follow-up and to analyze the causes of treatment failures. Methods: 48 out of 60 patients who underwent short-segment fixation for thoracolumbar burst fractures between January 1999 and October 2002 were enrolled in this study. Their neurological status, radiological images, and hospital records were retrospectively reviewed. Simple radiographs were evaluated to calculate kyphotic angles and percentages of anterior body compression (%ABC). Results: The average kyphotic angles were $20.0^{\circ}$ preoperatively, $9.6^{\circ}$ postoperatively, and $13.1^{\circ}$ at the latest follow-up. The average %ABC were 47.3% preoperatively, 31.2% postoperatively, and 33.3% at the latest follow-up. The treatment failure, defined as correction loss by $10^{\circ}$ or more or implant failure, was detected in 6 patients (12.5%). 5 out of 6 patients had implant failures. 2 out of 5 patients were related with osteoporosis, and the other 2 were related with poor compliance of spinal bracing. 3 patients with poor initial postoperative alignment had implant failure. 4 patients with screws only on the adjacent vertebrae and not on the injured vertebra itself showed poor initial and overall correction. Conclusion: With proper patient selection, adequate intraoperative reduction with screw fixation involving the injured vertebra, and strict postoperative spinal bracing, the short-segment fixation is an efficient and safe method in the treatment of thoracolumbar burst fracture.

The Use of Pedicle Screw-Rod System for the Posterior Fixation in Cervico-Thoracic Junction

  • Cho, Won-ik;Eid, Ahmed Shawky;Chang, Ung-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • Objective : In cervico-thoracic junction (CTJ), the use of strong fixation device such as pedicle screw-rod system is often required. Purpose of this study is to analyze the anatomical features of C7 and T1 pedicles related to screw insertion and to evaluate the safety of pedicle screw insertion at these levels. Methods : Nineteen patients underwent posterior CTJ fixation with C7 and/or T1 included in fixation levels. Seventeen patients had tumorous conditions and two with post-laminectomy kyphosis. The anatomical features were analyzed for C7 and T1 pedicles in 19 patients using computerized tomography (CT). Pedicle screw and rod fixation system was used in 16 patients. Pedicle violation by screws was evaluated with postoperative CT scan. Results : The mean values of the width, height, stable depth, safety angle, transverse angle, and sagittal angle of C7 pedicles were $6.9{\pm}1.34\;mm$, $8.23{\pm}1.18\;mm$, $30.93{\pm}4.65\;mm$, $26.42{\pm}7.91$ degrees, $25.9{\pm}4.83$ degrees, and $10.6{\pm}3.39$ degrees. At T1 pedicles, anatomic parameters were similar to those of C7. The pedicle violation revealed that 64.1% showed grade I violation and 35.9% showed grade II violation, overall. As for C7 pedicle screw insertion, grade I was 61.5% and grade II 38.5%. At T1 level, grade I was 65.0% and grade II 35.0%. There was no significant difference in violation rate between the whole group, C7, and T1 group. Conclusion : C7 pedicles can withstand pedicle screw insertion. C7 pedicle and T1 pedicle are anatomically very similar. With the use of adequate fluoroscopic oblique view, pedicle screw can be safely inserted at C7 and T1 levels.