• Title/Summary/Keyword: Screw stability

Search Result 239, Processing Time 0.019 seconds

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

Effect of tightening torque on the connection stability of a custom-abutment implant system: 3D finite element analysis (지대주 나사 조임 토크가 맞춤형 지대주 임플란트 시스템의 연결부 안정성에 미치는 영향: 3차원 유한 요소 해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • Purpose: This study aims to examine the stress distribution effect of tightening torques of different abutment screws in a custom-abutment implant system on the abutment-fixture connection interface stability using finite element analysis. Methods: The custom-abutment implant system structures used in this study were designed using CATIA program. It was presumed that the abutment screws with a tightening torque of 10, 20, and 30 N·cm fixed the abutment and fixture. Furthermore, two external loadings, vertical loading and oblique loading, were applied. Results: When the screw tightening torque was 10 N·cm, the maximum stress value of the abutment screw was 287.2 MPa that is equivalent to 33% of Ti-6Al-4V yield strength. When the tightening torque was 20 N·cm, the maximum stress value of the abutment screw was 573.9 MPa that is equivalent to 65% of Ti-6Al-4V yield strength. When the tightening torque was 30 N·cm, the maximum stress value of the abutment screw was 859.6 MPa that is similar to the Ti-6Al-4V yield strength. Conclusion: As the screw preload rose when applying each tightening torque to the custom-abutment implant system, the equivalent stress increased. It was found that the tightening torque of the abutment influenced the abutment-fixture connection interface stability. The analysis results indicate that a custom-abutment implant system should closely consider the optimal tightening torque according to clinical functional loads.

A Study on Design of Small Type Screw Decanter using Commercial Analysis Tool (상용해석 툴을 이용한 소형 스크류 디캔터의 설계에 관한 연구)

  • Kim, Y.S.;Kim, J.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.46-52
    • /
    • 2014
  • This study suggests a small-sized screw decanter specialized for dredging sites. Generally, conventional screw decanters are composed of a cylinder and a cone. However, the suggested screw decanter simply has a cone based on a cone-type bowl structure. In this research, a commercial analysis tool is used to establish an optimal design for the bowl and the screw conveyor. Moreover, the base frame, where the main bearings that support the spindle of the bowl and the screw conveyor are installed, is optimally designed considering the weight of the rotating body and the deflection caused by the high centrifugal force. Furthermore, the natural frequency range of the spinning body, the bowl and the screw conveyor, is applied to this base frame; it is designed not to correspond to the resonance frequency range and achieves stability as a result. This study suggests an optimal design for the rotating body and the base frame of a screw decanter considering its vibration characteristics. Such a design will prevent overuse of materials and help to reduce the weight and volume-and the price-of a screw decanter.

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

Abrasion of abutment screw coated with TiN

  • Jung, Seok-Won;Son, Mee-Kyoung;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.102-106
    • /
    • 2009
  • STATEMENT OF PROBLEM. Screw loosening has been a common complication and still reported frequently. PURPOSE. The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS. Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly mounted in liquid unsaturated poly-esther with dental surveyor. After 20 times of repeated closing and opening test, the evaluation for the change of inner surface of implant and TiN-coated abutment screw, and weight loss were measured. Mann-Whitney test with SPSS statistical software for Window was applied to analyze the measurement of weight loss. RESULTS. TiN-coated abutment screws of Osstem and 3i showed lesser loss of weight than non-coated those of Osstem and 3i (P < .05, Mann-Whitney test). CONCLUSION. Conclusively, TiN coating of abutment screw showed better resistance to abrasion than titanium abutment screw. It was concluded that TiN coating of abutment screw would reduce the loss of preload with good abrasion resistance and low coefficient of friction, and help to maintain screw joint stability.

THE STUDY ON THE IMPLANT GEOMETRY (3종의 임프란트 형태에 관한 연구)

  • Lee, Yong-Chan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.2
    • /
    • pp.245-252
    • /
    • 1996
  • The purpose of this study was to develop the implant which has superior stress distribution and primary stability to others by using Instron test and finite element method. The model used in the experiment were cylinder type implant, tapered screw type implant, screw type implants. Recognizing that the number of samples were small and the lack of applying press-fit conditions to the cylinder type, we can make the following conclusions.

  • PDF

A STUDY OF VON-MISES YIELD STRENGTH AFTER MANDIBULAR SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지시상분할골절단술 시행 후 von-Miese 항복강도에 대한 유한요소법적 연구)

  • Yoon, Ok-Byung;Kim, Yeo-Gab
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2002
  • For the study of its stability when the screw has been fixed after sagittal split ramus osteotomy(SSRO) of the mandible, the methods of screw arrangement are classified into two types, triangular and straight. The angles of screws to the bone surface are classified as perpendicular arrangements, the $60^{\circ}$ anterioinferior screw, known as triangular, and the most posterior screw, called straight arrangement, thus there are four types. The finite element method model has been made by using a three dimensional calculator and a supercomputer. The load directions are to the anterior teeth, premolar region, and molar region, and the bite force is 1 Kgf to each region. The distribution of stress, the von-Mises yield strength, and safety of margin refer to the total sum of transformed energy have been studied by comparison with each other. The following conclusion has been researched : 1. When shear stress is compared, in the triangular arrangement in the form of "ㄱ", the anterosuperior screw is seen at contributing to the support of the bone fragment. In the straight arrangement, substantial stress is seen to be concentrated on the most posterior angled screw. 2. When the von-Mises yield strength is compared, it seemed that the stress concentration on the angled anteroinferior screw is higher, it shows a higher possibility of fracture than any other screw. In the straight arrangement, stress appeared to be concentrated on the most posteriorly angled screw. 3. When the safety margins of the transfomed energy are compared, the energy conduction is much greater in the case of the angled screw than in the case of the perpendicular screw. The triangular arrangement in the form of "ㄱ" shows a superior clinical sign to that of the straight arrangement. Judging from the above results, when the screw fixation is made after SSRO in practical clinical cases, two screws should be inserted in the superior border of mandibular ramus and a third screw of mandibular inferior border should be inserted in the form of triangular. All screws on the bony surface should be placed perpendicularly-$90^{\circ}$ angles apparently best promote bony support and stability.

Influence of the Dental Implant Abutment Screw Coating Materials on Joint Stability (임플란트 지대주나사 코팅이 결합안정성에 미치는 영향)

  • Lim, Hyun-Pil;Park, Young-Sun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Yoon, Suk-ja
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.157-169
    • /
    • 2009
  • The aim of this study was to evaluate effect of implant abutment screw coating treatment on joint stability, investigating mechanical properties of these. For this study used $ExFeel^{(R)}$ external hexed implant system and $15mm{\times}1mm$ discs. Experimental group was $1{\mu}m$ TiN, TiCN, TiC coated abutment screws and discs. To know mechanical property, i evaluated adhesion strength, surface hardness, using disc, corrosion test using screw. The results were as follows : rotation angle of coated screws increased than that of non-coated screw because of lower friction coefficient, especially TiC coated screw group had the largest value, but removal torque decreased in all coated screws (p<0.05). Torque loss before and after fatigue test was the smallest in TiC-coated screws, and the largest in non-coated screws (p<0.05), and there was no statistically significant difference between dry condition and wet condition of screws because of higher surface hardness and lower friction coefficient. From the above results, TiN, TiCN, TiC coating group had high abrasion resistance, especially TiC coated group which had low torque-consuming, high rotation angle as low friction coefficient will be considered to influence on implant abutment screw joint stability positively.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

Biomechanical considerations for the screw of implant prosthesis: A literature review (임플란트 나사에 적용되는 생역학적 원리: 문헌고찰)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cha, Min-Sang;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • Purpose: This article attempted to determine the factors affecting the preload and screw loosening. Methods: Available clinical studies from 1981 to 2008 from the PUBMED that presented screw loosening data and review articles regarding screw joint stability were evaluated. Eleven studies dealing the biomechanical principles of the screw mechanics were reviewed. Moreover, the results of our data were included. Results: The frequency of screw loosening was consequently reduced due to the advancement in torque tightening with torque wrench, screw material, coating technique for reducing the frictional force, and thread design, etc. If preload in the screw falls below a critical level, joint stability may be compromised, and the screw joint may fail clinically. The types of fatigue failure of screw were divided to adhesive wear, plastic deformation, and screw fracture. Conclusion: An optimum preload is essential to the success of the implant-abutment complex. To maintain optimum preload, using a torque wrench and re-tightening at recall time were needed.