• Title/Summary/Keyword: Screw extruder

Search Result 269, Processing Time 0.031 seconds

Extrusion-cooking Using Twin-screw Extruder on Cordyceps Pruinosa (이축 압출 성형기를 이용한 붉은자루 동충하초의 압출 성형)

  • Kim D. E.;Sung J. M.;Kang W. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.8-16
    • /
    • 2005
  • The extrusion-cooking condition on Cordyceps pruinosa was designed using twin-screw extruder. Response surface methodology (RSM) was used to investigate extrusion-cooking using a central composition design with varying die temperature $(114-146^{\circ}C)$, feed moisture $(22-38\%)$, feed rate (4-14 ka/h) and screw speed (120-280 rpm). System parameters (die pressure and specific mechanical energy (SME)) and extrudate parameters (density and water solubility index (WSI)) were statically analyzed using RSH. Die pressure was significantly affected by temperature, moisture contents and feed rate. SM was affected by screw speed and feed rate. When die temperature is $130^{\circ}C$ and moisture content $25\%$, the optimum pressure is shown. SME is about 20 Wh/kg, when feed rate is $10\~12kg/min$ and screw speed $200\~250rpm$. WSI was affected by temperature and moisture contents. Density was not affected by any factor. WSI increases by $7\%$ from about $23\%$ to about $30\%$, as temperature is raised from $120^{\circ}C\;to\;140^{\circ}C$. The WSI of Cordyceps pruinosa pulverized after extruding (PE) is about $26.97\%$ higher than that of raw material and $10\%$ higher than that of pulverized after drying (PD). The content of unsaturated fatty acid were not significantly different in PD and PE. Anti-oxidative activity of PE was 1.67-2.2 times higher than that of PD in Cordyceps pruinosa using 1- dipheny1-2-picrylhydrazyl method (DPPH).

Effect of Fillers on Dispersion of Carbon Nanotubes in a Twin-Screw Extruder (이축압출기에서 카본나노튜브의 분산에 대한 충전제 효과)

  • Hong, Seung Soo;Shin, Ji Hee;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.342-346
    • /
    • 2013
  • In this study, it was attempted to disperse carbon nanotubes (CNTs) in a polymer matrix using a twin-screw extruder which was good for dispersing fillers of micron sizes but not suitable for dispersing nanometer-sized materials. Improved dispersion of CNTs could be achieved by the addition of inorganic fillers with different geometrical shapes. An increase in the matrix viscosity provided a high shear stress on aggregated CNTs, leading to a good dispersion of CNTs. The presence of the inorganic fillers was supposed to suppress the re-aggregation of CNTs in the regions where a lower shear stress was applied. As a result, the CNTs dispersion was well stabilized.

Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder

  • Lee, Rami;Park, Se-Ho;Baek, Jong-sung;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recycling of waste polyvinyl chloride plastics has attracted much attention due to environmental problems, but the poor mechanical properties, low thermal stability, frequent breakage of strands, and melt cracking of the waste plastics have limited their widespread use. To overcome these disadvantages of waste PVC (W-PVC), recycled PVC powder blend was prepared by adding high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) as a heat stabilizer and compatibilizer, respectively. An intermeshing co-rotating twin screw extruder was used to prepare the blend, and the characteristics of the blend were analyzed by SEM and TGA, and by using a UTM and Izod impact tester. The impact strength was improved as the EVA content increased for the W-PVC/HDPE (80/20 wt%) blend. As the HDPE and EVA contents increased in the W-PVC/HDPE/EVA blend, the impact strength increased. SEM observations also revealed the improved interfacial adhesion for the EVA-containing blend.

Effects of Feed Rate and Screw Speed of Extruded Diets on Growth and Body Composition of Olive Flounder Paralichthys olivaceus (사료원료 공급량 및 스크류 회전속도를 달리하여 제조한 배합사료가 넙치(Paralichthys olivaceus)의 성장 및 체조성에 미치는 영향)

  • Kim, Kyoung-Duck;Kim, Kang-Woong;Lee, Bong-Joo;Bae, Ki-Min;An, Cheul-Min;Han, Hyun-Sob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.577-581
    • /
    • 2014
  • The aim of this study was to investigate the effect of diet extruder conditions, such as feed-loading rate and screw speed, on growth performance and biochemical responses in olive flounder Paralichthys olivaceus. Over 8 wks, we used four identical diets (triplicated per treatment) with differing ratios of feed-loading rate (kg/h):screw speed (rpm/min) in a laboratory-scaled twin-screw extruder of 50:640, 80:640, 120:640, and 80:400, designated as EP1, EP2, EP3, and EP4, respectively. Screw speed impacted the buoyancy of experimental diets. Diets produced at a screw speed of 640 rpm/min floated for > 24 hrs, whereas those produced at a speed of 400 rpm/min sank between 10 s and 5 min. Fish that were fed EP1 and EP4 diets grew significantly faster than those fed EP2 and EP3 diets. Fish fed EP1 diets ate and gained weight most efficiently among treatments, a result that is likely to be related to feed-loading rate, i.e., ingredients extruded at a low feed-loading rate may have more time to cook in the pre-conditioner of the extruder. A cooked diet may be easier to digest in fish. Fish fed EP4 diets also showed significant weight gain, as compared to those fed EP2 and EP3 diets. However, we found no differences among treatments in proximate compositions of dorsal muscle, liver, and viscera of fish. Our results suggest that extruder conditions, may influence feed quality, impacting feed efficiency and growth of fish.

Product Characteristics as Factors of Process Parameters in Starch Phosphates Preparation by Twin-screw Extruder (이축압출성형기로 인산전분 제조시 Process Parameters에 따른 제품의 특성)

  • Kim, Chong-Tai;Kim, Dong-Chul;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.235-240
    • /
    • 1991
  • Starch phosphates were prepared from the corn starch mixed with 2% sodium tripolyphosphate by twin-screw extruder with a feed rate of 20 kg/hr and an extrusion temperature of $130^{\circ}C$, and the effects of extrusion variables on the physicochemical properties (target parameters) of starch phosphates were investigated. Interrelations of system parameters (specific mechanical energy and extrudate moisture) and rheological properities of starch was analyzed by using the response surface analysis. Degree of substitution (DS) was increased with increasing the feed moisture, and showed the maximum value at the screw of near 250 rpm, Degree of gelatinization was proportionally increased with increasing the screw speed and decreasing the feed moisture. Apparent viscosity of the paste was increased with increasing the feed moisture, but it was not significantly affected by the screw speed. It was found by scanning electron microscopy that the starch microgranules were much more degradaded, and as consequent result, the intrinsic viscosity was decreased, whereas, water solubility index was increased. The rate of retrogradation of the gels was retarded with increasing DS and decreasing viscosity.

  • PDF

Recycling of Waste XLPE Using a Modular Intermeshing Co-Rotating Twin Screw Extruder (모듈라 치합형 동방향회전 이축 스크류식 압출기를 이용한 폐 XLPE의 재활용)

  • Bang, Dae-Suk;Oh, Soo-Seok;Lee, Jong-Keun
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.131-141
    • /
    • 2004
  • The recycling of waste XLPE(crosslinked polyethylene), which is a major source of scraps from high voltage power transmission cables, has been discussed. The waste XLPE scraps were ground into fine powder with various sizes from less than $100{\mu}m$ up to about $1000{\mu}m$ using two types of tailor-made pulverizers. The compounds were prepared in a modular intermeshing co-rotating twin screw extruder at various conditions such as different compositions, types and powder sizes of waste XLPE, screw configurations and various polymer matrices (LDPE, HDPE, PP, PS). The mechanical and rheological properties and the fracture surface or the compounds were investigated. It was found that an improved impact strength was obtained from the compound with white XLPE powder pulverized from the scraps without outer/inner semi-conductive layers. Generally, the impact strength increases with the content of XLPE but decreases with the size of XLPE. Especially for LDPE, the extrusion was possible up to 80 wt% loading of XLPE. Also, the impact strength increases with the number of kneading disc blocks in the given screw configurations. The melt viscosity of the compounds increases with increasing XLPE loading. However, the higher shear thinning behavior of the compounds at common shear rates implies proper processibility of the compounds. In addition, the impact strength for other polymer matrices used increases with XLPE and it is noticeable that the impact strength of PS/XLPE (80/20 wt%) compound was improved twice that of pure PS.

A Study on Thermoplastic Elastomer Blend Using Waste Rubber Powder(I): Screw Configurations, Morphologies and Mechanical Properties (폐고무 분말을 이용한 TPE 블렌드에 관한 연구(I) : 스크류 조합, 모폴로지, 기계적 물성)

  • Lee, Sung-Hyo;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • For solving the environmental problem of the waste EPDM and for new TPE blend materials, we developed a new kind of TPE material using a co-rotating twin screw extruder. To improve the mechanical properties of TPE material such as tensile strength, elongation at break, and modulus of the blend, PP and waste EPDM powder were blended with different screw configurations. The mechanical properties of the blends and morphology of the TPE were investigated. As the number of kneading disc and left-handed screw element increased, dynamic vulcanization of the material was increased because the shear stress and residence time of blends increased.

  • PDF

Automation of Tire Tread Extruder Line Using Cameras (카메라를 이용한 타이어 트레드 압출라인 자동화)

  • Pyo, Choon-Seon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.262-267
    • /
    • 2013
  • This paper describes a vision based automation case study for the tire tread extruder line. To accurately measure the thread widths, two cameras with laser line illumination have been installed near the takeaway conveyer. The overall tread extruder line is then automated by controlling the speeds of take away conveyor and screw motor such that a difference between measured widths and the targeted data is minimized. By doing this, the conventional tread extruder line has been replaced by the developed automated computer system and with only one operator, increasing the production efficiency and reducing safety accidents.

The Effects of Screw Speeds and Moisture Contents on Soy Protein under Texturization Using a Single-screw Extruder (압출성형기의 스크류 회전속도와 원료수분함량이 대두단백질의 조직화에 미치는 영향)

  • Han, Ouk;Lee, Sang-Hyo;Lee, Hyun-Yu;Oh, Sang-Lyong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.772-779
    • /
    • 1989
  • The effects of screw speeds and moisture contents on the physical properties of texturized extrudate from isolated soy protein were examined by using a single-screw extruder. The screw speeds and moisture contents tested were in the range of 122-334 rpm and 20-35%, respectively, and die temperature were $90-145^{\circ}C$. The texturization characteristics such as nitrogen solubility index, integrity index, chewiness, density, rehydration ratio, and lightness after rehydration were appeared to be influenced by screw speed and moisture content. As the screw speed increased and moisture content decreased, die temperature, nitrogen solubility index, integrity index, lightness before and after rehydration were increased, while chewiness, density, water content of final extrudate wee decreased. The rehydration rate was changed drastically at the feed moisture content of 30% in particular. As the moisture content decreased, the air cell size became large and its number was increased. The effects of interaction between screw speed and moisture content of raw materials on the extrudate characteristics were tested by the analysis of variance.

  • PDF